dc.contributorTalero Sarmiento, Leonardo Hernán
dc.contributorParra Sánchez, Diana Teresa
dc.contributorMoreno Corzo, Feisar Enrique
dc.contributorNieves Peña, Néstor Edsgardo
dc.contributorTalero Sarmiento, Leonardo Hernán [0000031387]
dc.contributorParra Sánchez, Diana Teresa [0001476224]
dc.contributorMoreno Corzo, Feisar Enrique [0001499008]
dc.contributorNieves Peña, Néstor Edsgardo [0001597250]
dc.contributorParra Sánchez, Diana Teresa [es&oi=ao]
dc.contributorMoreno Corzo, Feisar Enrique [es&oi=ao]
dc.contributorTalero Sarmiento, Leonardo Hernán [0000-0002-4129-9163]
dc.contributorParra Sánchez, Diana Teresa [0000-0002-7649-0849]
dc.contributorMoreno Corzo, Feisar Enrique [0000-0002-5007-3422]
dc.contributorParra Sánchez, Diana Teresa [57195677014]
dc.contributorTalero Sarmiento, Leonardo Hernán [Leonardo-Talero]
dc.contributorParra Sánchez, Diana Teresa [Diana-Parra-Sanchez-2]
dc.creatorCala Pinzón, Karol Daniela
dc.creatorHernández Flórez, Lisseth Andrea
dc.creatorParra Muñoz, Cristian David
dc.date.accessioned2022-03-25T20:48:37Z
dc.date.available2022-03-25T20:48:37Z
dc.date.created2022-03-25T20:48:37Z
dc.date.issued2021
dc.identifierhttp://hdl.handle.net/20.500.12749/16073
dc.identifierinstname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifierreponame:Repositorio Institucional UNAB
dc.identifierrepourl:https://repository.unab.edu.co
dc.description.abstractEste proyecto, presenta el diseño y desarrollo de una aplicación móvil funcional capaz de estimar la producción de cacao, que propone la implementación de técnicas de visión por computador y aprendizaje profundo. Esto se debe a que la detección de objetos en la agricultura es importante para estimar la producción de un cultivo, porque incrementa la certeza en la toma de decisiones por parte de un agricultor, por consiguiente, el diseño propuesto realiza un conteo de las mazorcas de cacao que se encuentran en tres estados de sanidad, ya sea con presencia de monilia, fitóftora o completamente sanas. La aplicación planteada hace uso de una cámara de un dispositivo móvil y el sistema operativo Android. Los elementos presentes en el sistema, son un modelo de aprendizaje de máquina entrenado, un conjunto de datos, y tecnologías que apoyan el proceso de desarrollo de software. En primera instancia, se realiza una revisión de la literatura para profundizar sobre las técnicas, tecnologías, y métricas asociadas con visión artificial y que puedan ser aplicadas en el proyecto. Luego, se propone la selección de un conjunto de imágenes con Theobroma cacao. Asimismo, se plantea la adaptación de un modelo de aprendizaje profundo con una definición de parámetros e hiper parámetros, para posteriormente proponer un diseño y desarrollo de un prototipo móvil que detecta, clasifica y localiza las mazorcas de cacao con sus respectivos estados de sanidad, y a su vez estima la producción en términos de kilogramos de granos de cacao seco, teniendo en cuenta la variedad indicada por el usuario. Los resultados obtenidos dejan la evaluación de 8 modelos, en donde el mejor obtiene una mAP de 80.09% y se determina la incidencia de variables asociadas al balanceo sobre la precisión.
dc.languagespa
dc.publisherUniversidad Autónoma de Bucaramanga UNAB
dc.publisherFacultad Ingeniería
dc.publisherPregrado Ingeniería de Sistemas
dc.relationAlexeyAB/darknet: YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet). (2020). Retrieved May 5, 2021, from https://github.com/AlexeyAB/darknet
dc.relationAli Süzen, A., Gürfidan, R., Kayaalp, K., & Ali Şimşek, M. (2020). Information Technology and Computer Science. Information Technology and Computer Science, 2, 18–23. https://doi.org/10.5815/ijitcs.2020.02.02
dc.relationAndriod Developers. (2020). Android Studio. https://developer.android.com/studio/
dc.relationAndroid Studio Developer. (2020). Introducción a Android Studio. https://developer.android.com/studio/intro#top_of_page
dc.relationArgout, X., Salse, J., Aury, J.-M., Guiltinan, M. J., Droc, G., Gouzy, J., Allegre, M., Chaparro, C., Legavre, T., Maximova, S. N., Abrouk, M., Murat, F., Fouet, O., Poulain, J., Ruiz, M., Roguet, Y., Rodier-Goud, M., Barbosa-Neto, J. F., Sabot, F., … Lanaud, C. (2011). The genome of Theobroma cacao. Nature Genetics, 43(2), 101–108. https://doi.org/10.1038/ng.736
dc.relationBargoti, S., & Underwood, J. P. (2017). Image Segmentation for Fruit Detection and Yield Estimation in Apple Orchards. Journal of Field Robotics, 34(6), 1039– 1060. https://doi.org/https://doi.org/10.1002/rob.21699
dc.relationBeitzel, S. M., Jensen, E. C., & Frieder, O. (2009). MAP. Encyclopedia of Database Systems. (2009). In Encyclopedia of Database Systems. Springer US. https://doi.org/10.1007/978-0-387-39940
dc.relationBhardwaj, K. K., Banyal, S., & Sharma, D. K. (2019). Chapter 7 - Artificial Intelligence Based Diagnostics, Therapeutics and Applications in Biomedical Engineering and Bioinformatics (V. E. Balas, L. H. Son, S. Jha, M. Khari, & R. B. T.-I. of T. in B. E. Kumar (eds.); pp. 161–187). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-817356-5.00009-7
dc.relationBochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (n.d.). YOLOv4: Optimal Speed and Accuracy of Object Detection. Retrieved May 1, 2021, from https://arxiv.org/abs/2004.10934
dc.relationBresilla, K., Perulli, G. D., Boini, A., Morandi, B., Grappadelli, L. C., & Manfrini, L. (2020). Comparing deep-learning networks for apple fruit detection to classical hard-coded algorithms. Acta Horticulturae, 1279, 209–216. https://doi.org/10.17660/ActaHortic.2020.1279.31
dc.relationBurger, W., & Burge, M. J. (2016). Digital image processing: an algorithmic introduction using Java. Springer.
dc.relationBuzzy, M., Thesma, V., Davoodi, M., & Mohammadpour Velni, J. (2020). Real-Time Plant Leaf Counting Using Deep Object Detection Networks. In Sensors (Vol. 20, Issue 23). https://doi.org/10.3390/s20236896
dc.relationCai, Y., Li, H., Yuan, G., Niu, W., Li, Y., Tang, X., & Wang, Y. (2021). YOLObile: Real-Time Object Detection on Mobile Devices via Compression-Compilation Co-Design. www.aaai.org
dc.relationCecotti, H., Rivera, A., Farhadloo, M., & Pedroza, M. A. (2020). Grape detection with convolutional neural networks. Expert Systems with Applications, 159, 113588. https://doi.org/10.1016/j.eswa.2020.113588
dc.relationCMake. (2021). Retrieved May 5, 2021, from https://cmake.org/
dc.relationColorizer. (2020). http://colorizer.org/
dc.relationCUDA Zone | NVIDIA Developer. (2021). Retrieved May 5, 2021, from https://developer.nvidia.com/cuda-zone
dc.relationDe La Cruz Medina, J., Vargas Ortiz, M., Del Angel Coronel, O. (2011). CACAO: Operaciones Poscosecha. http://www.fao.org/3/a-au995s
dc.relationDostert, N., Asunción Cano, José Roque., La Torre, María I., W. M. (2011, October). Hoja botánica: Cacao. http://www.botconsult.com/downloads/Hoja_Botanica_Cacao_2012.pdf
dc.relationEveringham, M., Luc, ·, Gool, V., Christopher, ·, Williams, K. I., Winn, J., Zisserman, A., Everingham, M., Van Gool, L., Leuven, K. U., Williams, B. C. K. I., Winn, J., & Zisserman, A. (2010). The PASCAL Visual Object Classes (VOC) Challenge. Retrieved May 5, 2021, from http://www.flickr.com/
dc.relationFactors influencing smallholder cocoa production: a management analysis of behavioural decision-making processes of technology adoption and application. (1996). Retrieved September 4, 2020, from https://library.wur.nl/WebQuery/wurpubs/35987
dc.relationFAOSTAT. (n.d.). Retrieved April 13, 2021, from http://www.fao.org/faostat/en/#data/QC/metadat
dc.relationFEDECACAO y los Cacaocultores, le apuestan a la certificación en Buenas Prácticas Agrícolas. (Abril de 2019). Colombia Cacaotera, p.6. Recuperado de www.fedecacao.com.co
dc.relationFedecacao. (2005). CARACTERIZACIÓN FISÍCOQUÍMICA Y BENEFICIO DEL GRANO DE CACAO (Theobroma cacao L.) EN COLOMBIA. https://www.fedecacao.com.co/portal/images/recourses/pub_doctecnicos/fe decacao-pub-doc_09B.pdf
dc.relationFountain, A., & Hütz-Adams, F. (2015). 2015 Cocoa Barometer (USA edition). Retrieved from Barometer Consortium website: http://evols.library.manoa.hawaii.edu/handle/10524/48573
dc.relationFountain, A., & Hütz-Adams, F. (2018). Cocoa Barometer 2018. Retrieved from VOICE Network website: https://www.voicenetwork.eu/wpcontent/uploads/2019/07/2018-Cocoa-Barometer.pdf
dc.relationFountain, A., & Hütz-Adams, F. (2020). Cocoa Barometer 2020. Retrieved from VOICE Network website: https://www.voicenetwork.eu/wpcontent/uploads/2021/03/2020-Cocoa-Barometer-EN.pdf
dc.relationFranceschetti, D. R. (Ed.). (2018). Principles of Robotics & Artificial Intelligence
dc.relationFu, L., Gao, F., Wu, J., Li, R., Karkee, M., & Zhang, Q. (2020, October 1). Application of consumer RGB-D cameras for fruit detection and localization in field: A critical review. Computers and Electronics in Agriculture, Vol. 177, p. 105687. https://doi.org/10.1016/j.compag.2020.105687
dc.relationGayi, S. K., & Tsowou, K. (2017). Cocoa Industry. https://doi.org/10.18356/cfb75b0e-en
dc.relationGené-Mola, J., Gregorio, E., Auat Cheein, F., Guevara, J., Llorens, J., SanzCortiella, R., Escolà, A., & Rosell-Polo, J. R. (2020). Fruit detection, yield prediction and canopy geometric characterization using LiDAR with forced air flow. Computers and Electronics in Agriculture, 168. https://doi.org/10.1016/j.compag.2019.105121
dc.relationGonzalez, R. C., & Woods, R. E. (2018). Digital Image Processing (Fourth).
dc.relationGoogle Colaboratory. (2020). Google Colaboratory. https://colab.research.google.com/notebooks/intro.ipynb#recent=true
dc.relationHabibi Aghdam, H., & Jahani Heravi, E. (2017). Guide to Convolutional Neural Networks. Springer International Publishing. https://doi.org/10.1007/978-3319-57550-6
dc.relationHeredia Gómez, J. F., & Talero Sarmiento, L. H. (2020). Cocoa Ripeness Dataset TCS 01. https://www.kaggle.com/juanfelipeheredia/cocoa-ripeness-datasettcs-01
dc.relationHùng, V. (2020). Tensorflow-yolov4-tflite. https://github.com/hunglc007/tensorflowyolov4-tflite
dc.relationILRF (2014). The fairness gap: Farmer incomes and solutions to child labor in cocoa. Washington, DC, International Labor Rights Forum
dc.relationJhuria, M., Kumar, A., & Borse, R. (2013). Image processing for smart farming: Detection of disease and fruit grading. 2013 IEEE Second International Conference on Image Information Processing (ICIIP-2013), 521–526. https://doi.org/10.1109/ICIIP.2013.6707647
dc.relationJiang, Z., Zhao, L., Li, S., Jia, Y., & Liquan, Z. (n.d.). Real-time object detection method for embedded devices.
dc.relationKang, H., & Chen, C. (2020). Fast implementation of real-time fruit detection in apple orchards using deep learning. Computers and Electronics in Agriculture, 168, 105108. https://doi.org/10.1016/j.compag.2019.105
dc.relationKim, P. (2017). Deep Learning BT - MATLAB Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence. Apress. https://doi.org/10.1007/978-1-4842-2845-6_5
dc.relationKirk, R., Cielniak, G., & Mangan, M. (2020). L*a*b*Fruits: A Rapid and Robust Outdoor Fruit Detection System Combining Bio-Inspired Features with OneStage Deep Learning Networks. In Sensors (Vol. 20, Issue 1). https://doi.org/10.3390/s20010275
dc.relationKoirala, A., Walsh, K. B., Wang, Z., & McCarthy, C. (2019). Deep learning – Method overview and review of use for fruit detection and yield estimation. In Computers and Electronics in Agriculture (Vol. 162, pp. 219–234). Elsevier B.V. https://doi.org/10.1016/j.compag.2019.04.017
dc.relationKonica Minolta. (2020). Entendiendo El Espacio de Color CIE L*A*B*. https://sensing.konicaminolta.us/mx/blog/entendiendo-el-espacio-de-colorcie-lab/
dc.relationKrig, S. (2014). Computer Vision Metrics: Survey, Taxonomy, and Analysis (Vol. 9781430259305). https://doi.org/10.1007/978-1-4302-5930-5
dc.relationLiu, X., Chen, S. W., Liu, C., Shivakumar, S. S., Das, J., Taylor, C. J., … Kumar, V. (2019). Monocular Camera Based Fruit Counting and Mapping with Semantic Data Association. IEEE Robotics and Automation Letters, 4(3), 2296–2303. https://doi.org/10.1109/LRA.2019.2901987
dc.relationMaldonado, W., & Barbosa, J. C. (2016). Automatic green fruit counting in orange trees using digital images. Computers and Electronics in Agriculture, 127, 572–581. https://doi.org/10.1016/j.compag.2016.07.
dc.relationMartínez Guerrero, N. (2016). Aportes de la investigación de FEDECACAO –Fondo Nacional del Cacao al incremento de la productividad y reconocimiento de la calidad del cacao de Colombia
dc.relationMitchell, T. M. (1997). Machine Learning. McGraw-Hill Science/Engineering/Math
dc.relationMite-Baidal, K., Solís-Avilés, E., Martínez-Carriel, T., Marcillo-Plaza, A., Cruz-Ibarra, E., & Baque-Bustamante, W. (2019). Analysis of Computer Vision Algorithms to Determine the Quality of Fermented Cocoa (Theobroma Cacao): Systematic Literature Review. Advances in Intelligent Systems and Computing, 901, 79–87. https://doi.org/10.1007/978-3-030-10728-4_9
dc.relationMordvintsev, A., & Abid K. (2013). Fourier Transform. https://opencv-pythontutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_transforms/py_f ourier_transform/py_fourier_transform.html
dc.relationMotamayor, J. C., Lachenaud, P., da Silva e Mota, J. W., Loor, R., Kuhn, D. N., Brown, J. S., & Schnell, R. J. (2008). Geographic and Genetic Population Differentiation of the Amazonian Chocolate Tree (Theobroma cacao L). PLoS ONE, 3(10), e3311. https://doi.org/10.1371/journal.pone.0003311
dc.relationNVIDIA cuDNN | NVIDIA Developer. (2021). Retrieved May 5, 2021, from https://developer.nvidia.com/cudnn
dc.relationOpenCV - OpenCV. (2021). Retrieved May 5, 2021, from https://opencv.org
dc.relationOpenCV. (2015). Introduction to SURF (Speeded-Up Robust Features). https://docs.opencv.org/master/df/dd2/tutorial_py_surf_intro.html
dc.relationPacto por Colombia, pacto por la equidad. (2018). Plan Nacional de Desarrollo. Recuperado de https://colaboracion.dnp.gov.co/CDT/Prensa/ResumenPND2018-2022-final.pdf
dc.relationPatel, H., Jiménez, A., Ceres, R., Annamalai, P., & Lee, W. (2013). A Survey of Computer Vision Methods for Counting Fruits and Yield Prediction
dc.relationPDD-Santander. (2020). Santander siempre contigo y para el mundo Plan de Desarrollo Departamental 2020-2023. Planeación Departamental, 53(9), 1689.
dc.relationPython Software Foundation. (2016). Python Package Index. LabelImg. https://pypi.org/project/labelImg/
dc.relationRahnemoonfar, M., & Sheppard, C. (2017). Deep Count: Fruit Counting Based on Deep Simulated Learning. Sensors, 17(4), 905. https://doi.org/10.3390/s17040905
dc.relationRedacción Economía. (20 de Agosto de 2020). El Espectador: Gobierno presentó proyecto de ley para incluir a Colombia en Organización Internacional del Cacao. Recuperado de https://www.elespectador.com/
dc.relationRedmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2018). You Only Look Once: Unified, Real-Time Object Detection. Retrieved from http://pjreddie.com/yolo/
dc.relationRussell, S. J., Norvig, P., Canny, J. F., Malik, J. M., Edwards, D. D., Jonathan, S. J. S., & Norvig, P. (1995). Arificial Intelligence: A Modern Approach. Alan Apt
dc.relationSánchez, V., Z ambrano, J., & Iglesias, C. (2019). La cadena de valor del cacao en América Latina y el Caribe. Retrieved from: http://repositorio.iniap.gob.ec/handle/41000/5382
dc.relationSchuld, M., & Petruccione, F. (2018). Machine Learning. In Supervised Learning with Quantum Computers (pp. 21–73). Springer International Publishing. https://doi.org/10.1007/978-3-319-96424-9_2
dc.relationSerrano, S., & Heredia Gómez, J. F. (2020). Cocoa Diseases (YOLOv4). https://www.kaggle.com/serranosebas/enfermedades-cacao-yolov4
dc.relationShorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1), 60. https://doi.org/10.1186/s40537-019-0197-0
dc.relationSolomon, C., & Breckon, T. (2011). Fundamentals of Digital Image Processing. https://doi.org/doi:10.1002/9780470689776.
dc.relationTan, D. S., Leong, R. N., Laguna, A. F., Ngo, C. A., Lao, A., Amalin, D., & Alvindia, D. (2016). A framework for measuring infection level on cacao pods. 2016 IEEE Region 10 Symposium (TENSYMP), 384–389. https://doi.org/10.1109/TENCONSpring.2016.7519437
dc.relationVasconez, J. P., Delpiano, J., Vougioukas, S., & Auat Cheein, F. (2020). Comparison of convolutional neural networks in fruit detection and counting: A comprehensive evaluation. Computers and Electronics in Agriculture, 173, 105348. https://doi.org/10.1016/j.compag.2020.105348
dc.relationVoora, V., Bermúdez, S., & Larrea, C. (2019). Global Market Report: Cocoa. International Institute for Sustainable Development.
dc.relationWan, S., & Goudos, S. (2020). Faster R-CNN for multi-class fruit detection using a robotic vision system. Computer Networks, 168, 107036. https://doi.org/10.1016/j.comnet.2019.107036
dc.relationWang, C.-Y., Liao, H.-Y. M., Yeh, I.-H., Wu, Y.-H., Chen, P.-Y., & Hsieh, J.-W. (2019). CSPNET: A NEW BACKBONE THAT CAN ENHANCE LEARNING CAPABILITY OF CNN A PREPRINT. https://github.com/WongKinYiu/CrossStagePartialNetworks.
dc.relationWang, Q., Nuske, S., Bergerman, M., & Singh, S. (2013). Automated Crop Yield Estimation for Apple Orchards. In J. P. Desai, G. Dudek, O. Khatib, & V. Kumar (Eds.), Experimental Robotics: The 13th International Symposium on Experimental Robotics (pp. 745–758). Springer International Publishing. https://doi.org/10.1007/978-3-319-00065-7_50
dc.relationWhite, S., & Kennedy, J. (2018). CMY and CMYK Color Spaces. https://docs.microsoft.com/en-us/windows/win32/wcs/cmy-and-cmyk-colorspaces
dc.relationZhang, B., Gao, Y., Zhao, S., & Liu, J. (2010). Local Derivative Pattern Versus Local Binary Pattern: Face Recognition With High-Order Local Pattern Descriptor. IEEE Transactions on Image Processing, 19(2), 533–544. https://doi.org/10.1109/TIP.2009.2035882
dc.relationZhou, Z., Song, Z., Fu, L., Gao, F., Li, R., & Cui, Y. (2020). Real-time kiwifruit detection in orchard using deep learning on AndroidTM smartphones for yield estimation. Computers and Electronics in Agriculture, 179, 105856. https://doi.org/10.1016/j.compag.2020.105856
dc.relationZou, H., Lu, H., Li, Y., Liu, L., & Cao, Z. (2020). Maize tassels detection: a benchmark of the state of the art. Plant Methods, 16(1), 1–15. https://doi.org/10.1186/s13007-020-00651-z
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleDesarrollo de un prototipo funcional de software para estimar la producción de cacao, haciendo uso de herramientas de aprendizaje profundo y visión por computador


Este ítem pertenece a la siguiente institución