dc.contributorPineda Ríos, Wilmer Darío
dc.contributorhttps://orcid.org/0000-0001-7774-951X
dc.contributorhttps://scholar.google.es/citations?user=5KmOl5oAAAAJ&hl=es
dc.contributorhttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001454199
dc.contributorhttps://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000007553
dc.creatorRugeles Díaz, Leidy Tatiana
dc.date.accessioned2018-02-14T13:33:20Z
dc.date.accessioned2023-06-12T18:06:26Z
dc.date.available2018-02-14T13:33:20Z
dc.date.available2023-06-12T18:06:26Z
dc.date.created2018-02-14T13:33:20Z
dc.date.issued2018
dc.identifierRugeles, L. (2018). Estimación bayesiana de modelos lineales generalizados en datos funcionales. (Trabajo de pregrado). Universidad Santo Tomás. Bogotá, Colombia
dc.identifierhttp://hdl.handle.net/11634/10374
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6659680
dc.description.abstractCurrent studies, should not always be handled as usual data where an individual represents a specific object, if not as functional data, such that an individual represents a curve, in which its continuous nature is conserved and a significant reduction of the dimension of the data. Functional variables are characterized by the evolution of a variable over time (stochastic process), so that the values they take are, in general, functions of one or several arguments instead of vectors as in classical multivariate analysis. (Master course in statistics, University of Granada, 2016). Within the analysis of functional data, generalized linear models are addressed; these models group both models with numerical and categorical variables, which leads us to take into account other distributions (Poisson, binomial, hypergeometric, gamma, multinomial, etc.), in addition to the normal one, and these advances in the theory of linear models are drunk to Nelder and Wedderbum, and jointly Bayes’s theorem is imposed, which transcends classical application, especially when it is extended to another context in which probability is not exclusively understood as the relative frequency of an event long term, but as the degree of personal conviction that the event occurs or may occur (subjective definition of probability). By admitting a subjective management of probability, the Bayesian analyst will be able to make probability judgments about a H hypothesis and express in this way his degree of conviction in this regard, both before and after having observed the data ([PDF] Bayesian Statistics). Considering these topics, a study of Latin America (Without Suriname and Guyana) of the democracy index EIU is made, based on three indices, which are: Per cápita Gross Domestic Product and GINI Index from the year 2002 until 2015.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado Estadística
dc.publisherFacultad de Estadística
dc.relationHORVÁTH, L. y KOKOSZKA, P., (2012) Inference for Functional Data with Applications, New York Heidelberg Dordrecht London, (Vol.200) Springer .
dc.relationRAMSAY, J. O. y SILVERMAN, B.W., (2005) Functional Data Analysis, Segunda edición, Springer-Verlag.
dc.relationHANS-GEORG MÜLLER y ULRICH STADTMÜLLER., (2005) Generalized functional linear models., Project Euclid (mathematics and statistics online). Vol.33 (2) 774-805.
dc.relationANDREW GELMAN, JOHN B. CARLIN, HAL S. STERN , DAVID B. DUNSON, AKI VEHTARI y DONALD B. RUBIN, (2014) Bayesian Data Analysis,Taylor & Francis Group, Broken Sound Parkway, NW., 3ra Edición.
dc.relationBANCO MUNDIAL «PIB per cápita (US$ a precios actuales)» https://datos.bancomundial.org/indicador/NY.GDP.PCAP.CD
dc.relationBANCO MUNDIAL «Índice de Gini». https://datos.bancomundial.org/indicador/SI.POV.GINI
dc.relationHANS-GEORG MÜLLER y ULRICH STADTMÜLLER,(2005) «Generalized Functional Linear Models», The Annals of Statistics, Institute of Mathematical Statistics, Vol. 33, No. 2, 774-805.
dc.relationMARÍN, JUAN MIGUEL, (2005)«Tema 1: Introducción a la Estadística Bayesiana». Departamento de Estadística, Universidad Carlos III de Madrid. http://halweb.uc3m.es/esp/Personal/personas/jmmarin/esp/Bayes/tema1bayes.pdf
dc.relationMAYETRI GUPTA y JOSEPH G. IBRAHIM,(2009) «An Information Matrix Prior for Bayesian Analysis in Generalized Linear Models with High Dimensional Data», Stat Sin. 19(4): 1641-1663. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909687/
dc.relationFACULTAD DE INGENIERÍA,«ESTADÍSTICA BAYESIANA», Universidad de la República de Uruguay. https://eva.fing.edu.uy/pluginfile.php/81075/mod_resource/content/1/ESTADISTICA%20BAY
dc.relationCIPRIAN M. CRAINICEANU y A. JEFFREY GOLDSMITH (2010),«Bayesian Functional Data Analysis Using WinBUGS», Journal of Statistical Software, Volume 32, Issue 11. file:///C:/Users/USER/Downloads/v32i11%20(2).pdf
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleEstimación bayesiana de modelos lineales generalizados en datos funcionales


Este ítem pertenece a la siguiente institución