dc.contributorPardo Beainy, Camilo Ernesto
dc.contributorGutiérrez Cáceres, Edgar Andrés
dc.contributorUniversidad Santo Tomas
dc.creatorMedina Saenz, Iván Andrés
dc.creatorMur Parra, Camilo Andrés
dc.date.accessioned2022-10-05T22:35:17Z
dc.date.accessioned2023-06-12T16:46:40Z
dc.date.available2022-10-05T22:35:17Z
dc.date.available2023-06-12T16:46:40Z
dc.date.created2022-10-05T22:35:17Z
dc.date.issued2022-10-04
dc.identifierMedina Saenz Iván Andrés, Mur Parra Camilo Andrés, Diseño e Implementación de Técnicas de Visión Artificial para la Detección y Localización de Frutos.
dc.identifierhttp://hdl.handle.net/11634/47517
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6658888
dc.description.abstractToday calculate or keep in mind fruit densities in plantations with large areas, is a problem since as these areas spread out, it becomes more difficult to foresee quantities of the fruit to study and in turn limits the farmer to be dependent on systems rudimentary For this reason, a system capable of identifying fruits and locating crops is proposed. within a large-scale crop, all using artificial vision algorithms, artificial intelligence and geolocation. This system is designed with the aim of improving decision making by farmers and of the specialists of the cultivation of strawberries, in front of collection times and harvest projection, of In this way, the efficiency of production and quality of the fruit is increased, thus giving an impact on the market, being able to estimate quantities and harvest times, thus showing decreases in the time that the counting process would take manually, in order to acquire effects favorable, gives way to the design and implementation of artificial vision techniques for the detection and location of fruits, contemplating that this system is totally portable and functional within of the field of work, since it performs the pre-processing, processing and post-processing been in cultivation.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado Ingeniería Electrónica
dc.publisherFacultad de Ingeniería Electrónica
dc.relationM. Bramuel and M. Jiménez, “Estudio de algoritmos en imágenes para conteo de población del cultivo de banano,” 04 2018.
dc.relationX. Liu, S. W. Chen, S. Aditya, N. Sivakumar, S. Dcunha, C. Qu, C. J. Taylor, J. Das, and V. Kumar, “Robust fruit counting: Combining deep learning, tracking, and structure from motion,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp. 1045–1052.
dc.relationE. J. Sadgrove, G. Falzon, D. Miron, and D. Lamb, “Fast object detection in pastoral lands- capes using a colour feature extreme learning machine,” Computers and electronics in agri- culture, vol. 139, pp. 204–212, 2017.
dc.relationL. López Mas, “Diseño de un sistema de visión por ordenador para la caracterización del color del tomate (solanum lycopersicum l.),” Ph.D. dissertation, UPC, Escola Superior d’Agricultura de Barcelona, Sep 2017. [Online]. Available: http://hdl.handle.net/2117/108252
dc.relationG. García Bandala et al., “Fenología, calidad y rendimiento de fruto de fresa variedad’el dorado’con fertilización química y orgánica,” B.S. thesis, 2019.
dc.relationJ. J. d. Vicente Sugue, “Análisis de algoritmos de detección de características de opencv en raspberry pi,” 2020.
dc.relationA. G. Marcos, F. J. M. de Pisón Ascacíbar, F. A. Elías, M. C. Limas, J. B. O. Meré, E. P. V. González et al., “Técnicas y algoritmos básicos de visión artificial,” Técnicas y Algoritmos Básicos de Visión Artificial, 2006.
dc.relationR. Szeliski, Computer vision: algorithms and applications. Springer Science & Business Media, 2010.
dc.relationJ. A. C. Osorio, W. A. Urueña, and J. A. M. Vargas, “Técnicas alternativas para la conversión de imágenes a color a escala de grises en el tratamiento digital de imágenes,” Scientia et technica, vol. 1, no. 47, pp. 207–212, 2011.
dc.relationD. E. Figueroa, E. R. Guerrero et al., “Sistema de visión artificial para la identificación del estado de madurez de frutas (granadilla),” Redes de Ingeniería, vol. 7, no. 1, pp. 78–86, 2016.
dc.relationE. Alegre, G. Pajares, and A. de la Escalera, Conceptos y Métodos en Visión por Computador. Grupo de Visión del Comité Español de Automática, 2016.
dc.relationJ. D. A. Hernández, A. F. J. López, and H. O. P. Castro, “Desarrollo de aplicaciones en python para el aprendizaje de física computacional,” Ingeniería Investigación y Desarrollo: I2+ D, vol. 16, no. 1, pp. 72–82, 2016.
dc.relationE. Stein, S. Liu, and J. Sun, “Real-time object detection on an edge device.”
dc.relationA. Borji, M.-M. Cheng, H. Jiang, and J. Li, “Salient object detection: A benchmark,” IEEE transactions on image processing, vol. 24, no. 12, pp. 5706–5722, 2015. 87
dc.relationN. Pellejero, G. L. Grinblat, and L. Uzal, “Análisis semántico en rostros utilizando redes neuronales profundas,” in XVIII Simposio Argentino de Inteligencia Artificial (ASAI)-JAIIO 46 (Córdoba, 2017)., 2017.
dc.relationA. Younis, L. Shixin, S. Jn, and Z. Hai, “Real-time object detection using pre-trained deep learning models mobilenet-ssd,” in Proceedings of 2020 the 6th international conference on computing and data engineering, 2020, pp. 44–48.
dc.relationJ. V. Rebaza, “Detección de bordes mediante el algoritmo de canny,” Escuela Académico Profesional di Informática. Universidad Nacional de Trujillo, vol. 4, 2007
dc.relationJ. Davis and M. Goadrich, “The relationship between precision-recall and roc curves,” in Proceedings of the 23rd international conference on Machine learning, 2006, pp. 233–240.
dc.relationtesiunam. [Online]. Available: https://tesiunam.dgb.unam.mx/F/ 7Y5JDKUTQS7KRQ3L5GRQ2TLUTIHTJ7VFUGY8B9BYS92PVVKDR3-42638?func= full-set-set&set_number=535566&set_entry=000002&format=002
dc.relationF. Seco, K. Koutsou, F. Ramos, and A. R. Jiménez, “Localización personal en entornos interiores con tecnología rfid,” Revista Iberoamericana de Automática e Informática industrial, vol. 10, no. 3, pp. 313–324, 2013.
dc.relationB. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, Global positioning system: theory and practice. Springer Science & Business Media, 2012
dc.relationA. Bel, G. Capobianco, U. Chialva, R. Cobiaga, J. A. Del Punta, W. A. Reartes, V. Aja, N. Alonso, S. A. Balda, P. E. Bertacco et al., “La matemática detrás del gps: propuesta didáctica para matemática: Nivel secundario,” 2018.
dc.relationGISGeography. [Online]. Available: https://acolita.com/como-funcionan-los-dispositivos gps-trilateracion-vs-triangulacion/
dc.relationJ. James. [Online]. Available: https://world.ubergizmo.com/es/como/aprende-a-leer-las coordenadas-del-gps/
dc.relationC. T. MARIO ALEJANDRO, “Estrategias biológicas para el manejo de enfermedades en el cultivo de fresa (Fragaria spp.),” Revista Colombiana de Ciencias Hortí-colas, vol. 7, pp. 263 – 276, 12 2013. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_ arttext&pid=S2011-21732013000200011&nrm=iso
dc.relationT. S. Gunawan, A. Ashraf, B. S. Riza, E. V. Haryanto, R. Rosnelly, M. Kartiwi, and Z. Janin, “Development of video-based emotion recognition using deep learning with google colab,” TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 18, no. 5, pp. 2463–2471, 2020.
dc.relationA. VISUS. [Online]. Available: https://www.esic.edu/rethink/tecnologia/para-que-sirve python
dc.relationL. deCastillo. [Online]. Available: https://www.deltatracking.com/2020/09/01/pasos-a tomar-en-cuenta-para-interpretar-tramas-de-gps
dc.relationG. Baddeley. [Online]. Available: http://aprs.gids.nl/nmea/#gga.
dc.relationD. Khort, A. Kutyrev, I. Smirnov, V. Osypenko, and N. Kiktev, “Computer vision system for recognizing the coordinates location and ripeness of strawberries,” in International Conference on Data Stream Mining and Processing. Springer, 2020, pp. 334–343
dc.relationE. J. Sadgrove, G. Falzon, D. Miron, and D. W. Lamb, “Real-time object detection in agricul- tural/remote environments using the multiple-expert colour feature extreme learning machine (mec-elm),” Computers in Industry, vol. 98, pp. 183–191, 2018
dc.relationD. O. Orbes Padilla, “Implementación de un sistema de detección por visión artificial en la etapa de recolección del cultivo de fresas,” Master’s thesis, 2022
dc.relationE. Huerta, A. Mangiaterra, and G. Noguera, “Gps,” Posicionamiento Satelital, 2005
dc.relation. L. Alba, J. Cid, and I. Mora, “Métodos de análisis de imágenes,” Extracción de caracterís- ticas, Umbralización. Universidad de Vigo. España, 2006
dc.relationD. Tzutalin, “Labelimg,” gitCode. [Online]. Available: https://github.com/tzutalin/labelImg
dc.relationD. A. SILVA CARNERO, “Análisis de arquitecturas cnn del estado del arte en el reconoci- miento de actividades por video.” Ph.D. dissertation, Universidad Autónoma de Chihuahua, 2021.
dc.relationD. Nvidia. [Online]. Available: https://developer.nvidia.com/embedded/learn/get-started jetson-nano-devkit#setup
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleDiseño e Implementación de Técnicas de Visión Artificial para la Detección y Localización de Frutos.


Este ítem pertenece a la siguiente institución