dc.contributorDiaz Olariaga, Oscar Eduardo
dc.contributorRodriguez Pinzon, Heivar Yesid
dc.contributorhttps://orcid.org/0000-0002-4858-3677
dc.contributorhttps://orcid.org/0000-0002-9553-0455
dc.contributorhttps://scholar.google.com/citations?hl=es&user=v4XBXJAAAAAJ
dc.contributorhttps://scholar.google.com/citations?hl=es&user=9gC738EAAAAJ
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001561684
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001256491
dc.contributorUniversidad Santo Tomas
dc.creatorNagera Acosta, Ana Leonilde
dc.creatorLemus Franco, Exmelin Hamid
dc.date.accessioned2022-12-14T13:38:34Z
dc.date.accessioned2023-06-12T16:26:17Z
dc.date.available2022-12-14T13:38:34Z
dc.date.available2023-06-12T16:26:17Z
dc.date.created2022-12-14T13:38:34Z
dc.date.issued2022-12-13
dc.identifierNagera Acosta, A. L. y Lemus Franco, E. H. (2022). Pronóstico post pandemia del tráfico aéreo. Caso de Colombia. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio Institucional.
dc.identifierhttp://hdl.handle.net/11634/48350
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6658674
dc.description.abstractAirport planning, and therefore the development of air infrastructure, depends to a large extent on the levels of demand that are forecast for the future. To plan investments in infrastructure of an airport system and to be able to meet future needs, it is essential to predict the level and distribution of demand, both for passengers and air cargo. In this thesis work, a medium-long term forecast (10 years) of the demand for passengers and air cargo was made, applied to a specific case study, Colombia, and where the impact on the air traffic during the most severe period of the COVID-19 pandemic, 2020, and the post-pandemic transition period (2021). To achieve this objective, and as a methodological approach, a model of the Bayesian Structural Time Series (BSTS) type is developed, designed to work with time series data, and widely used for feature selection, time series forecasting, immediate, and the inference of the causal impact. From the results obtained, two relevant aspects can be highlighted, firstly, that both demand and its growth trend will recover very soon (in just a couple of years), compared to the pre-pandemic year-2019, in which analyzed case study. And, secondly, the model presents very acceptable MAPE values (between 1% and 7%, depending on the variable to be forecast), which makes the BSTS method a viable alternative methodology for calculating air traffic forecasts.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherMaestría Infraestructura Vial
dc.publisherFacultad de Ingeniería Civil
dc.relationAbed, S. Y.; Ba-Fail, A. O. & Jasimuddin, S. M. (2001). An econometric analysis of international air travel demand in Saudi Arabia. Journal of Air Transport Management, 7, 143–148. https://doi.org/10.1016/S0969-6997(00)00043-0
dc.relationACI (2022). The impact of COVID-19 on airports - and the path to recovery. Montreal: ACI World.
dc.relationACI (2021). Annual World Airport Traffic Report. Montreal: ACI (Airports Council International).
dc.relationACI (2016). Traffic Forecast. Montreal: ACI (Airports Council International).
dc.relationAdenigbo, A.; Mageto, J.; Luke, R. (2022). Macroeconomic Determinants of Air Cargo Flows in Ghana. Latin American Journal of Trade Policy, 5(12), 7-36. DOI: 10.5354/0719-9368.2022.67061
dc.relationAerocivil (2022). Estadísticas de transporte aéreo. https://www.aerocivil.gov.co/atencion/estadisticas-de-las-actividades-aeronauticas/boletines-operacionales (visitada el 14 de mayo 2022)
dc.relationAlexander, D.; Merkert, R. (2021). Applications of gravity models to evaluate and forecast US international air freight markets post-GFC. Transport Policy, 104, 52–62. DOI: 10.1016/j.tranpol.2020.04.004
dc.relationAl-Sultan, A.; Al-Rubkhi, A.; Alsaber, A.; Pan, J. (2021). Forecasting air passenger traffic volume: evaluating time series models in long-term forecasting of Kuwait air passenger data. Advances and Applications in Statistics, 70 (1), 69-89. DOI: 10.17654/AS070010069
dc.relationANI - Agencia Nacional de Infraestructura (Colombia) (2022). https://www.ani.gov.co/categorias/aeropuertos (visitada el 18 de mayo 2022)
dc.relationAshford, N.; Mumayiz, S. & Wright, P. (2011). Airport Engineering. New Jersey: John Wiley & Sons.
dc.relationAston, J. A. D. & Koopman, S. J. (2006). A non-Gaussian generalization of the airline model for robust seasonal adjustment. Journal of Forecasting, 25, 325–349. https://doi.org/10.1002/for.991
dc.relationBach, S.; Huang, B.; London, B.; Getoor, L. (2013). Hinge-loss Markov Random Fields: Convex Inference for Structured Prediction. arXiv:1309.6813 [cs.LG]. https://doi.org/10.48550/arXiv.1309.6813
dc.relationBaier, F.; Berster, P.; Gelhausen, M. (2021). Global cargo gravitation model: airports matter for forecasts. International Economics and Economic Policy. DOI: 10.1007/s10368-021-00525-2
dc.relationBao, Y.; Xiong, T. & Hu, Z. (2012). Forecasting Air Passenger Traffic by Support Vector Machines with Ensemble Empirical Mode Decomposition and Slope-Based Method. Discrete Dynamics in Nature and Society, ID 431512, 1-12. doi:10.1155/2012/431512
dc.relationBox, G.; Tiao, G. (1975). Intervention analysis with applications to economic and environmental problems. Journal of the American Statistical Association, 70, 70–79. http://dx.doi.org/10.1080/01621459.1975.10480264
dc.relationBrodersen, K.; Gallusser, F.; Koehler, J.; Remy, N.; Scott, S. (2015). Inferring causal impact using Bayesian structural time-series models. The Annals of Applied Statistics, 9, 247–274. https://doi.org/10.1214/14-AOAS788
dc.relationBudd, L. & Ison, S. (2017). Air Transport Management. London: Routledge.
dc.relationCerri, J.; Carnevali, L.; Monaco, A.; Genovesi, P.; Bertolino, S. (2022). Blacklists do not necessarily make people curious about invasive alien species. A case study with Bayesian structural time series and Wikipedia searches about invasive mammals in Italy. NeoBiota, 71, 113–128. https://doi.org/10.3897/neobiota.71.69422
dc.relationChen, S.; Kuo, S.; Chang, K. & Wang, Y. (2012). Improving the forecasting accuracy of air passenger and air cargo demand: the application of back-propagation neural networks. Transportation Planning and Technology, 35(3), 373-392. DOI: 10.1080/03081060.2012.673272
dc.relationChin, A. T. H. & Tay, J. H. (2001). Developments in air transport: implications on investment decisions, profitability and survival of Asian airlines. Journal of Air Transport Management, 7, 319–330. https://doi.org/10.1016/S0969-6997(01)00026-6
dc.relationChou, T.; Liang, G.; Han, T. (2011). Application of fuzzy regression on air cargo volume forecast. Quality and Quantity, 45, 1539–1550. DOI: 10.1007/s11135-010-9342-8
dc.relationDANE - Departamento Administrativo Nacional de Estadística (Colombia) (2022). https://www.dane.gov.co/ (visitada el 17 abril 2022)
dc.relationDantas, T.; Oliveira, F.; Repolho, H. (2017). Air transportation demand forecast through Bagging Holt Winters methods. Journal of Air Transport Management, 59, 116–123. https://doi.org/10.1016/j.jairtraman.2016.12.006
dc.relationde Neufville, R. & Odoni, A. (2013). Airport Systems, Planning, Design, and Management. New York: McGraw-Hill.
dc.relationDíaz Olariaga, O. (2021). Contribución del transporte aéreo a la conectividad territorial. El caso de Colombia. EURE, 47(140), 117-141. doi: https://doi.org/10.7764/EURE.47.140.06
dc.relationDíaz Olariaga, O.; Alonso, C. (2021). Impact of airport policies on regional development. Evidence from the Colombian case. Regional Science Policy & Practice, 1–26. DOI: 10.1111/rsp3.1248326
dc.relationDíaz Olariaga, O.; Girón, E. (2020). Análisis de la influencia de la privatización de aeropuertos en el pronóstico de la demanda de pasajeros. El caso de Colombia. Revista Transporte y Territorio, 22, 94-113. doi: 10.34096/rtt.i22.8408
dc.relationDíaz Olariaga, O.; Pulido, L. (2019). Measurement of airport efficiency. The case of Colombia. Transport and Telecommunication, 20(1), 40-51
dc.relationDíaz Olariaga, O.; Zea, J.F. (2018). Influence of the liberalization of the air transport industry on configuration of the traffic in the airport network. Transportation Research Procedia, 33, 43-50.
dc.relationDingari, M.; Reddy, M. & Sumalatha, V. (2019). Air Traffic Forecasting Using Artificial Neural Networks. International Journal of Scientific & Technology Research, 8(10), 556-559.
dc.relationDurbin, J.; Koopman, S. (2002). A simple and efficient simulation smoother for state space time series analysis. Biometrika, 89, 603–615. https://doi.org/10.1093/biomet/89.3.603
dc.relationFernandes, E. & Pacheco, R. R. (2010). The causal relationship between GDP and domestic air passenger traffic in Brazil. Transportation Planning and Technology, 33, 569–581. https://doi.org/10.1080/03081060.2010.512217
dc.relationGarcía Cruzado, M. (2013). Aeropuertos. Planificación, Diseño y Medio Ambiente. Madrid: Ibergarceta Publicaciones.
dc.relationGarrow, L. A. & Koppelman, F. S. (2004). Predicting air travelers’ no-show and standby behavior using passenger and directional itinerary information. Journal of Air Transport Management, 10, 401–411. https://doi.org/10.1016/j.jairtraman.2004.06.007
dc.relationGeorge, E.; McCulloch, R. (1997). Approaches for Bayesian Variable Selection. Statistica Sinica. 7. 339-373. http://www.jstor.org/stable/24306083
dc.relationGiri, S.; Purkayastha, S.; Hazra, S.; Chanda, A.; Das, I.; Das, S. (2020). Prediction of Monthly Hilsa (Tenualosa ilisha) Catch in the Northern Bay of Bengal using Bayesian Structural Time Series Model. Regional Studies in Marine Science. 39, 101456. DOI: 10.1016/j.rsma.2020.101456
dc.relationGriffiths, W. (2001). Bayesian Inference in the Seemingly Unrelated Regressions Model. Computer-aided econometrics. Boca Ratón: CRC Press.
dc.relationGrosche, T.; Rothlauf, F. & Heinzl, A. (2007). Gravity models for airline passenger volume estimation. Journal of Air Transport Management, 13, 175–183. DOI: 10.1016/j.jairtraman.2007.02.001
dc.relationGudmundsson, S.V.; Cattaneo, M. & Redondi, R. (2021). Forecasting temporal world recovery in air transport markets in the presence of large economic shocks: The case of COVID-19. Journal of Air Transport Management, 91, 102007.
dc.relationGupta, V.; Sharma, K.; Sangwan, M. (2019). Airlines passenger forecasting using LSTM based recurrent neural networks. International Journal Information Theories and Applications, 26(2), 178-187.
dc.relationHamilton, D. (1994). Time Series Analysis. Princeton: Princeton University Press.
dc.relationHarvey, A.; Trimbur, T.; Van Dijk, H. (2007). Trends and Cycles in Economic Time Series: A Bayesian Approach. Journal of Econometrics, 140, 618-649. DOI: 10.1016/j.jeconom.2006.07.006
dc.relationHoeting, J.; Madigan, D.; Raftery, A.; Volinsky, C. (1999). Bayesian Model Averaging: A Tutorial. Statistical Science, 14(4), 382-417. https://www.jstor.org/stable/2676803
dc.relationHonjo, K.; Shiraki, H. & Ashina, S. (2018). Dynamic linear modeling of monthly electricity demand in Japan: Time variation of electricity conservation effect. PloS ONE, 13(4), e0196331. https://doi.org/10.1371/journal.pone.0196331
dc.relationHoronjeff, R.; McKelvey, F.; Sproule, W. & Young, S. (2010). Planning and Design of Airports. New York: McGraw-Hill.
dc.relationIATA (2022). Global Outlook for Air Transport. Geneva: IATA.
dc.relationIATA (2021). World Air Transport Statistics 2021. Geneva: IATA.
dc.relationICAO (2022). Effects of Novel Coronavirus (COVID 19) on Civil Aviation: Economic Impact Analysis. Montreal: ICAO.
dc.relationICAO (2006). Manual on Air Traffic Forecasting. Doc 8991. Montreal: ICAO.
dc.relationICAO (1987). Master Planning. Part 1. Doc 9184. Montreal: ICAO.
dc.relationJalali, P.; Rabotyagov, S. (2020). Quantifying cumulative effectiveness of green stormwater infrastructure in improving water quality. Science of the Total Environment, 731, 138953. DOI: 10.1016/j.scitotenv.2020.138953
dc.relationJanic (2021). System Analysis and Modelling in Air Transport. Boca Raton: CRC Press.
dc.relationJanic, M. (2009). Airport analysis, planning and design: demand, capacity and congestion. New York: Nova Science Publishers.
dc.relationJones, R.H. (2019). Longitudinal Data with Serial Correlation: A state-space approach. Boca Raton: Chapman & Hall / CRC Press
dc.relationKalman, R.E. (1960). A new approach to linear filtering and prediction problems. Transactions of the ASME-Journal of Basic Engineering, 82, 35-45.
dc.relationKazda, A. & Caves, R. (2015). Airport design and operations. Bingley: Emerald.
dc.relationKiracı, K.; Battal, Ü. (2018). Macroeconomic Determinants of Air Transportation: A VAR Analysis on Turkey. Gaziantep University Journal of Social Sciences, 17(4), 1536-1557.
dc.relationKoller, D.; Friedman, N. (2009). Probabilistic Graphical Models. Cambridge, MA: MIT Press.
dc.relationLi, H.; Bai, J.; Cui, X.; Li, Y.; Sun, S. (2020). A new secondary decomposition-ensemble approach with cuckoo search optimization for air cargo forecasting. Applied Soft Computing Journal, 90, 106161. DOI: 10.1016/j.asoc.2020.106161
dc.relationLiu, J.; Ding, L.; Guan, X.; Gui, J., Xu, J. (2020). Comparative analysis of forecasting for air cargo volume: Statistical techniques vs. machine learning. Journal of Data, Information and Management, 2, 243–255. DOI: 10.1007/s42488-020-00031-1
dc.relationMadhavan, M.; Sharafuddin, M.; Piboonrungroj, P., Yang, C. (2020). Short-term Forecasting for Airline Industry: The Case of Indian Air Passenger and Air Cargo. Global Business Review. DOI: 10.1177/0972150920923316
dc.relationMadigan, D.; Raftery, A. E. (1994). Model selection and accounting for model uncertainty in graphical models using Occam’s window. Journal of the American Statistical Association, 89(428), 1535–1546. https://doi.org/10.2307/2291017
dc.relationMeijer, G. (2020). Fundamentals of Aviation Operations. London: Routledge.
dc.relationMostafaeipour, A.; Goli, A. & Qolipour, M. (2018). Prediction of air travel demand using a hybrid artificial neural network (ANN) with Bat and Firefly algorithms: a case study. The Journal of Supercomputing, 74(10), 5461-5484. https://doi.org/10.1007/s11227-018-2452-0
dc.relationMuros, J.G.; Díaz Olariaga, O. (2021). Utilización de algoritmos de redes neuronales artificiales en el pronóstico de la demanda de pasajeros aéreos. In Serna, E. (Ed.), Desarrollo e Innovación en Ingeniería Vol. I (pp. 277-294). Medellín: Editorial Instituto Antioqueño de Investigación. DOI: 10.5281/5513899
dc.relationNavarro, S.; Acuña, J. (2021). Determination of the average daily annual traffic growth rates in Nicaragua based on macroeconomic data. Revista Ciencia y Tecnología El Higo, 11(2), 70–83. https://doi.org/10.5377/elhigo.v11i2.13033
dc.relationOnder, E.; Kunzu, S. (2014). Forecasting air traffic volumes using smoothing techniques. Journal of Aeronautics and Space Technologies, 7(1), 65-85. DOI: 10.7603/s40690-014-0006-0
dc.relationPeters, J.; Janzing, D.; Schölkopf, B. (2017). Elements of Causal Inference: Foundations and Learning Algorithms. Cambridge, MA: MIT Press.
dc.relationPetris, G.; Petrone, S.; Campagnoli, P. (2009). Dynamic linear models with R. Springer. https://doi.org/10.1007/b135794_2
dc.relationRen, L.; Glasure, Y. (2009), Applicability of the revised mean absolute percentage errors (mape) approach to some popular normal and non-normal independent time series. International Advances in Economic Research, 15, 409–420. DOI: 10.1080/01621459.1975.10480264
dc.relationRodríguez, M.; Mejía, M.; Zapata, S. (2015). La causalidad entre el crecimiento económico y la expansión del transporte aéreo: un análisis empírico para Chile. Revista de Economía Del Rosario, 18(1), 127–144. https://doi.org/10.12804/rev.econ.rosario.18.01.2015.04
dc.relationRodríguez, Y.; Pineda, W. & Díaz Olariaga, O. (2020). Air traffic forecast in post-liberalization context: a Dynamic Linear Models approach. Aviation, 24(1), 10-19. DOI: 10.3846/aviation.2020.12273
dc.relationSamagaio, A. & Wolters, M. (2010). Comparative analysis of government forecasts for the Lisbon Airport. Journal of Air Transport Management, 16, 213–217. DOI: 10.1016/j.jairtraman.2009.09.002
dc.relationSantana, L.J. (2019). Nowcasting with Google Trends: Dynamics of the Monthly Economic Activity, Private Consumption and Investment based on Google Trends Data and a Bayesian
dc.relationStructural Time Series Model. XIII Foro de Investigadores de Bancos Centrales del Consejo Monetario Centroamericano. Ciudad de Guatemala, Guatemala, 5-6 Sept. 2019. https://www.secmca.org/recard/index.php/foro/article/view/154
dc.relationSchmitt, D; Gollnick, V. (2016). Air Transport System. Heidelberg: Springer.
dc.relationScott, S.; Varian, H. (2014). Predicting the present with Bayesian structural time series. International Journal of Mathematical Modelling and Numerical Optimisation, 5(1-2), 4-23.
dc.relationScott, S.; Varian, H. (2015). Bayesian Variable Selection for Nowcasting Economic Time Series. NBER Chapters, in: Economic Analysis of the Digital Economy, 119-135. National Bureau of Economic Research, Inc
dc.relationSrisaeng, P.; Baxter, G. & Wild, G. (2015). Using an artificial neural network approach to forecast Australia’s domestic passenger air travel demand. World Review of Intermodal Transportation Research, 5(3), 281-313.
dc.relationStock, J. & Watson, M. (2012). Introducción a la Econometría. Madrid: Pearson.
dc.relationSuryani, E.; Chou, S.; Chen, C. (2012). Dynamic simulation model of air cargo demand forecast and terminal capacity planning. Simulation Modelling Practice and Theory, 28, 27–41. DOI: 10.1016/j.simpat.2012.05.012
dc.relationSuryani, E.; Chou, S.; Chen, C. (2010). Air passenger demand forecasting and passenger terminal capacity expansion: A system dynamics framework. Expert Systems with Applications, 37, 2324–2339.
dc.relationTascón, D.; Díaz Olariaga, O. (2021). Air traffic forecast and its impact on runway capacity. A System Dynamics approach. Journal of Air Transport Management, vol. 90, 1-10. DOI: 10.1016/j.jairtraman.2020.101946
dc.relationTsui, W. H. K.; Balli, H.; Gilbey, A.; Gow, H. (2014). Forecasting of Hong Kong airport’s passenger throughput. Tourism Management, 42, 62–76. https://doi.org/10.1016/j.tourman.2013.10.008
dc.relationVieira, J.; Braga, C., Pereira, R. (2022). The impact of COVID-19 on air passenger demand and CO2 emissions in Brazil. Energy Policy, 164, 112906. DOI: 10.1016/j.enpol.2022.112906
dc.relationWalpole, R.; Myers, R.; Myers, S; Ye, K. (2012). Probabilidad y estadística para ingenierías y ciencias. México: Pearson.
dc.relationWells, A.; Young, S. (2004). Airport Planning & Management. New York: McGraw-Hill.
dc.relationWest, M. & Harrison, J. (2006). Bayesian forecasting and dynamic models. Springer Science & Business Media.
dc.relationWooldridge, J. (2013). Introductory Econometrics. Mason (OH): South-Western.
dc.relationZhang, Y.; Fricker, J. (2021). Quantifying the Impact of COVID-19 on Non-Motorized Transportation: A Bayesian Structural Time Series Model. Transport Policy, 103, 11-20. DOI: 10.1016/j.tranpol.2021.01.013
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titlePronóstico pospandemia de tráfico aéreo. Caso de Colombia


Este ítem pertenece a la siguiente institución