dc.contributorBayona Ayala, Olga Lucía
dc.creatorCastro Palma, Oscar Javier
dc.creatorRangel Jiménez, Duberney
dc.date.accessioned2023-03-15T16:52:40Z
dc.date.accessioned2023-06-12T16:14:44Z
dc.date.available2023-03-15T16:52:40Z
dc.date.available2023-06-12T16:14:44Z
dc.date.created2023-03-15T16:52:40Z
dc.date.issued2023-03-15
dc.identifierCastro Palma, O. J., Bayona Ayala, O. L., Rangel Jiménez, D. (2023). Análisis del desarrollo tecnológico en la producción de biodiesel por ruta enzimática. [Tesis de posgrado]. Universidad Santo Tomás, Bucaramanga, Colombia
dc.identifierhttp://hdl.handle.net/11634/49919
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6658566
dc.description.abstractThe energy transition in the world has boosted the production of biofuels. Colombia has come a long way as it is the main producer of palm oil in Latin America and the second in worldwide. Palm oil, a first generation oil, is a raw material in the production of biodiesel together with an alcohol and the catalyst. These raw materials must meet certain physicochemical characteristics to increase the conversion of triglycerides, diglycerides and monoglycerides to biodiesel. To further reduce the environmental impact, the production of biofuels is migrating to new methodologies that evaluate the use of first, second, third and fourth generation oils; alcohols other than methanol and ethanol. Likewise, the immobilized enzyme catalyst type is a technology that generates good conversions depending on the selection of enzyme for the transesterification or esterification reaction. Bacterial-type lipases such as Pseudomonas Candida Antarctica achieve conversions close to 80% with used palm oil (third generation), a conversion of 97% with cottonseed oil and methanol. Likewise, the reactors have gone from being Batch, CSTR, PFR or chemostat reactors to packed bed biological reactors - PBR, air lift reactors - ALR and bubble column reactor - BCR, which reduce shear stresses while maintaining integrity. of the enzymes. The monitoring and analysis of these new technologies was carried out with bibliometric tools under the search equation "biodiesel and reactor and enzyme or lipase and pubyear > 2011" generating a review of 256 publications.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherMaestría Ciencias y Tecnologías Ambientales
dc.publisherFacultad de Química Ambiental
dc.relationCoy, J. L., Jurado, J. V., Velásquez, S. H., & Acevedo, E. B. (2015). Análisis del sector biodiésel en Colombia y su cadena de suministro. Universidad del Norte.
dc.relationKalita, P., Basumatary, B., Saikia, P., Das, B., & Basumatary, S. (2022). Biodiesel as renewable biofuel produced via enzyme-based catalyzed transesterification. Energy Nexus, 6, 100087. https://doi.org/10.1016/J.NEXUS.2022.100087
dc.relationLuković, N., Knežević-Jugović, Z., Bezbradica, D., Luković, N., Knežević-Jugović, Z., & Bezbradica, D. (2011). Biodiesel Fuel Production by Enzymatic Transesterification of Oils: Recent Trends, Challenges and Future Perspectives. Alternative Fuel. https://doi.org/10.5772/21905
dc.relationBabadi, A. A., Rahmati, S., Fakhlaei, R., Barati, B., Wang, S., Doherty, W., & Ostrikov, K. (2022). Emerging technologies for biodiesel production: Processes, challenges, and opportunities. Biomass and Bioenergy, 163, 106521. https://doi.org/10.1016/J.BIOMBIOE.2022.106521
dc.relationPérez Marulanda Nicolas, Fedepalma, & Cenipalma. (2021). Balance 2021 y perspectivas 2022 de la agroindustria de la palma de aceite. https://web.fedepalma.org/sites/default/files/04032022_Balance2021_y_perspectivas_2022delaagroindustria_de_la_palma_de_aceite_CMG.pdf
dc.relationCubides-Roman, D. C., Pérez, V. H., De Castro, H. F., Orrego, C. E., Giraldo, O. H., Silveira, E. G., & David, G. F. (2017). Ethyl esters (biodiesel) production by Pseudomonas fluorescens lipase immobilized on chitosan with magnetic properties in a bioreactor assisted by electromagnetic field. Fuel, 196, 481-487.
dc.relationFernandez-Lorente, G., Rocha-Martín, J., & Guisan, J. M. (2020). Immobilization of lipases by adsorption on hydrophobic supports: Modulation of enzyme properties in biotransformations in anhydrous media. Immobilization of Enzymes and Cells: Methods and Protocols, 143-158.]
dc.relationASTM, Standard Specification for Biodiesel Fuel Blendstock (B100) for Middle Distillate Fuels. ASTM, Editor 2012, ASTM.].
dc.relationKai et al., 2012. Kai, T., Kubo, A., Nakazato, T., Takanashi, H., Uemura, Y., 2012. Influence of the acid value on biodiesel fuel production using a two-step batch process with a homogeneous catalyst. International Journal of Biomass & Renewables 1, 15-20.).
dc.relationShahbazi, M. R., Khoshandam, B., Nasiri, M., & Ghazvini, M. (2012). Biodiesel production via alkali-catalyzed transesterification of Malaysian RBD palm oil–Characterization, kinetics model. Journal of the Taiwan institute of chemical engineers, 43(4), 504-510.
dc.relationChanakaewsomboon, I., Tongurai, C., Photaworn, S., Kungsanant, S., & Nikhom, R. (2020). Investigation of saponification mechanisms in biodiesel production: Microscopic visualization of the effects of FFA, water and the amount of alkaline catalyst. Journal of Environmental Chemical Engineering, 8(2), 103538.
dc.relationNikhom, R., & Tongurai, C. (2014). Production development of ethyl ester biodiesel from palm oil using a continuous deglycerolisation process. Fuel, 117, 926-931
dc.relationR.M. Sridharan Transesterification reactions J Sci Ind Res (India), 33 (1974), pp. 178-186].
dc.relationOkolie, J. A., Escobar, J. I., Umenweke, G., Khanday, W., & Okoye, P. U. (2022). Continuous biodiesel production: A review of advances in catalysis, microfluidic and cavitation reactors. Fuel, 307, 121821.]
dc.relationKalita, P., Basumatary, B., Saikia, P., Das, B., & Basumatary, S. (2022). Biodiesel as renewable biofuel produced via enzyme-based catalyzed transesterification. Energy Nexus, 100087.
dc.relationLuković, N., Knežević-Jugović, Z., & Bezbradica, D. (2011). Biodiesel fuel production by enzymatic transesterification of oils: recent trends, challenges and future perspectives. Alternative fuel, 1.
dc.relationBabadi, AA, Rahmati, S., Fakhlaei, R., Barati, B., Wang, S., Doherty, W. y Ostrikov, K. (2022). Tecnologías emergentes para la producción de biodiesel: procesos, desafíos y oportunidades. Biomasa y Bioenergía , 163 , 106521.
dc.relationLuković, N., Knežević-Jugović, Z., & Bezbradica, D. (2011). Biodiesel fuel production by enzymatic transesterification of oils: recent trends, challenges and future perspectives. Alternative fuel, 1
dc.relationPoppe, R. Fernandez-Lafuente, R.C. Rodrigues, M.A.Z. Ayub Enzymatic reactors for biodiesel synthesis: present status and future prospects Biotechnol Adv, 33 (2015), pp. 511-525
dc.relationNielsen PM, Brask J, Fjerbaek L. Enzymatic biodiesel production: technical and economical considerations. Eur J Lipid Sci Technol 2008;110:692–700.
dc.relationJCJ Bart, Palmeri N, Cavallaro S. Industrial process technology for biodiesel production. Biodiesel sci. Technol. From soil to oil. Woodhead Publishing Series in Energy; 2010. p. 462–513
dc.relationTran, D. T., Lin, Y. J., Chen, C. L., & Chang, J. S. (2014). Modeling the methanolysis of triglyceride catalyzed by immobilized lipase in a continuous-flow packed-bed reactor. Applied energy, 126, 151-160.
dc.relationDang-Thuan Tran, Ching-Lung Chen, Jo-Shu Chang. Continuous biodiesel conversion via enzymatic transesterification catalyzed by immobilized Burkholderia lipase in a packed-bed bioreactor. Applied Energy. Volume 168. 2016. Pages 340-350. ISSN 0306-2619. https://doi.org/10.1016/j.apenergy.2016.01.082.
dc.relationMerchuk, J.C.; Gluz, M. Bioreactors, Air Lift Reactors; Wiley Online Library: Hoboken, NJ, USA, 2002; pp. 320-352
dc.relationX. Zhao, F. Qi, C. Yuan, W. Du, D. Liu, Lipase-catalyzed process for biodiesel production: enzyme immobilization, process simulation and optimization, Renew. Sustain. Energy Rev. 44 (2015) 182–197.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsAbierto (Texto Completo)
dc.rightsMagister en Ciencias y Tecnologías Ambientales
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_14cb
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleAnálisis del desarrollo tecnológico en la producción de biodiesel por ruta enzimática


Este ítem pertenece a la siguiente institución