dc.contributorCalderón Chávez, Juan Manuel
dc.contributorhttps://orcid.org/0000-0002-4471-3980
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000380938
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001672896
dc.contributorUniversidad Santo Tomás
dc.creatorDurán Caicedo, Alfonso
dc.date.accessioned2023-02-01T21:44:14Z
dc.date.accessioned2023-06-12T15:25:51Z
dc.date.available2023-02-01T21:44:14Z
dc.date.available2023-06-12T15:25:51Z
dc.date.created2023-02-01T21:44:14Z
dc.date.issued2023-02-01
dc.identifierDurán Caicedo, A. (2022). Detector de Personas con Armas de Fuego a Partir de un Sistema de Visión Artificial Basado en el Análisis de Posturas Corporales. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio Institucional.
dc.identifierhttp://hdl.handle.net/11634/49244
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6657998
dc.description.abstractIn the social environment, every day it is appreciated how insecurity is an overwhelming evil, both for people and for the community in general. The most used objects to perpetrate this type of criminal acts are firearms. With this project, it is proposed to implement a system based on artificial vision that can, through Deep Learning algorithms and body positioning tools such as OpenPose, recognize a person with a firearm. The classification of objects or firearms is implemented with convolutional neural networks (CNN). To make this image processing faster and more effective, several development techniques will be used on Google Colab, Jupyter Lab, Oracle Virtual Machine and Git Bash, also taking advantage of the use of an NVIDIA RTX A5000 model GPU card for faster execution of each of the steps of the proposed development. The proposed project phases are five: database development, model training, validation, OpenPose implementation, model results. It also has several sub-phases that allow the efficient implementation of the project. Finally, the system made it possible to confirm the dangerous activity with a firearm through detections obtained through videos in real time.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherMaestría Ingeniería Electrónica
dc.publisherFacultad de Ingeniería Electrónica
dc.relationConsejo de Bogotá. https://concejodebogota.gov.co/la-inseguridad-en-bogota-no-datregua/cbogota/2021-08-18/130620.php 2021.
dc.relationMedicina Legal. https://www.medicinalegal.gov.co/documents/20143/386932/ Forensis+2018.pdf/be4816a4-3da3-1ff0-2779-e7b5e3962d60
dc.relationC. Wang, Y. Wang, & Yuille, A. L. An approach to pose-based action recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 915-922). 2013.
dc.relationB. Cyganek, &, J. P. Siebert (2011). An introduction to 3D computer vision techniques and algorithms. John Wiley & Sons
dc.relationONU-HABITAT https://onuhabitat.org.mx/index.php/violencia-en-inseguridad-enlas-ciudades
dc.relationUniversidad Nacional de Cuyo. http://www.politicaspublicas.uncu.edu.ar/ articulos/index/inseguridad-un-analisis-desde-la-estructura-social
dc.relationT. Gil Márquez. "Una preocupación por la seguridad: Jaume Curbet, in memoriam." 2012.
dc.relationI. Hereu, J. Curbet. "Inseguridad global, seguridad mundicéntrica." Revista Catalana de Seguretat Pública. 2011.
dc.relationE. Spinelli, and ESTRELLA MARIELA. "Criminalística: Lugar del hecho." Especialización en Medicina Legal Dra. RattoNielsen. Instituto Universitario de Ciencias de la Salud Fundación HA Barcelona.
dc.relationL. Barros. Planificacion de la Actividad Delictual en casos de Robo con Violencia o Intimidación. 2016.
dc.relationC. Gutiérrez Lancho, "Detección de armas en vídeos mediante técnicas de Deep Learning." 2019.
dc.relationJ. G. Jiménez. Visión por computador. Paraninfo. 2000.
dc.relationD. A. Montoya. Implementación y evaluación del rendimiento de redes neuronales densas en FPGA para la inferencia rápida, aplicadas a problemas en física y visión artificial. 2020.
dc.relationJ. M. Pérez. Inteligencia computacional inspirada en la vida (Vol. 36). Servicio Publicaciones UMA. 2010.
dc.relationP. Loncomilla. "Deep learning: Redes convolucionales." Recuperado de https://ccc. inaoep. mx/~ pgomez/deep/presentations . 2016
dc.relationK. H. Tan, &, B. P. Lim. The artificial intelligence renaissance: Deep learning and the road to human-level machine intelligence. APSIPA Transactions on Signal and Information Processing, 7. 2018.
dc.relationA. Verma, P. Singh and J. S Rani., "Modified Convolutional Neural Network Architecture Analysis for Facial Emotion Recognition," in 2019 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 169-173, 2019.
dc.relationE. G. Sánchez, J. A. Nalvaiz, & Lozano, L. O. Introducción a las redes neuronales de convolución. Aplicación a la visión por ordenador. 2019.
dc.relationF. M. Quiroga. Medidas de invarianza y equivarianza a transformaciones en redes neuronales convolucionales (Doctoral dissertation, Universidad Nacional de La Plata). 2020.
dc.relationD. Erroz Arroyo. Visualizando neuronas en redes neuronales convolucionales. 2019.
dc.relation] F. L., Saca, A. F. Ramírez, C. A. Cruz, J. V. Cortez, , A. Z López., &, E. R. Martínez. Preprocesamiento de bases de datos de imágenes para mejorar el rendimiento de redes neuronales convolucionales. Research in Computing Science, 147(7), 35-45. 2018
dc.relationF. Almeida, , D. Giménez, , J. M. Mantas, &, A. M. Vidal. Introducción a la programación paralela. Thompson Paraninfo. 2008.
dc.relationR., Vuduc, A Chandramowlishwaran, J. Choi, , M Guney, &, A. Shringarpure. On the limits of GPU acceleration. In Proceedings of the 2nd USENIX conference on Hot topics in parallelism (Vol. 13, No. 0). 2010.
dc.relationM. Bernaschi, A. Di Lallo, , R Fulcoli, , E. Gallo, &, L. Timmoneri Combined use of graphics processing unit (GPU) and central processing unit (CPU) for passive radar signal & data elaboration. In 2011 12th International Radar Symposium (IRS) (pp. 315-320). IEEE. 2011.
dc.relationF. Bozkurt, , M. Yaganoglu, &, F. B. Günay. Effective Gaussian blurring process on graphics processing unit with CUDA. International Journal of Machine Learning and Computing, 5(1), 57. 2015.
dc.relationJ. Cheng, , M. Grossman, &, T. McKercher. Professional CUDA c programming. John Wiley & Sons. 2014.
dc.relationP. Jiang, , D. Ergu, , F. Liu, , Y. Cai, &, B. Ma. A Review of YOLO algorithm. 2022.
dc.relationR. A. Tessler, S. J. Mooney, C. E. Witt, K. O’Connell, J. Jenness,M. S. Vavilala, and F. P. Rivara, ‘‘Use of firearms in terrorist attacks:Differences between the United States, Canada, Europe, Australia, and New Zealand,’’ JAMA Internal Med., vol. 177, no. 12, pp. 1865–1868,
dc.relationN. Vállez, G. Bueno, and O. Déniz, ‘‘False positive reduction in detector implantation,’’ in Artificial Intelligence in Medicine (Lecture Notes inComputer Science), vol. 7885, N. Peek, R. M. Morales, and M. Peleg, Eds.Berlin, Germany: Springer, , doi: 10.1007/978- 3-642-38326-7_28. 2013.
dc.relationA. Castillo, S. Tabik, F. Pérez, R. Olmos, and F. Herrera, ‘‘Brightness guided preprocessing for automatic cold steel weapon detection in surveillance videos with deep learning,’’ eurocomputing, vol. 330, pp. 151–161, Feb. 2019.
dc.relationS. Nercessian, K. Panetta, and S. Agaian, ‘‘Automatic detection of potential threat objects in X-ray luggage scan images,’’ in Proc. IEEE Conf. Technol.Homeland Secur., , pp. 504– 509. May 2008.
dc.relationZ. Xiao, X. Lu, J. Yan, L. Wu, and L. Ren, ‘‘Automatic detection of concealed pistols using passive millimeter wave imaging,’’ in Proc. IEEE Int. Conf. Imag. Syst. Techn. (IST), Sep., pp. 1–4. 2015.
dc.relationG. Flitton, T. P. Breckon, and N. Megherbi, ‘‘A comparison of 3D interest point descriptors with application to airport baggage object detection in complex CT imagery,’’ Pattern Recognit., vol. 46, no. 9, pp. 2420–2436, Sep. 2013
dc.relationG. Flitton, A. Mouton, and T. P. Breckon, ‘‘Object classification in 3Dbaggage security computed tomography imagery using visual codebooks,’’Pattern Recognit., vol. 48, no. 8, pp. 2489–2499, Aug. 2015.
dc.relationR. K. Tiwari and G. K. Verma, ‘‘A computer vision based framework for visual gun detection using Harris interest point detector,’’ Procedia Comput. Sci., vol. 54, pp. 703–712, Jan. 2015
dc.relationN. B. Halima and O. Hosam, ‘‘Bag of words based surveillance system using support vector machines,’’ Int. J. Secur. Appl., vol. 10, no. 4, pp. 331–346, Apr. 2016.
dc.relation] R. Girshick, ‘‘Fast R-CNN,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),Dec., pp. 1440–1448. 2015.
dc.relationG. K. Verma and A. Dhillon, ‘‘A handheld gun detection using faster R-CNN deep learning,’’ in Proc. 7th Int. Conf. Comput. Commun. Technol. (ICCCT), , pp. 84–88. 2017
dc.relationJ. Ponce. "Dataset issues in object recognition." Toward category-level object recognition. Springer, Berlin, Heidelberg, 2006.
dc.relationG. Olague "Evolutionary computer vision." Proceedings of the 9th annual conference companion on Genetic and evolutionary computation. 2007.
dc.relationE. Alegre &, R. Fernandez &, E. Mora & Es, Morae@unican &, A. Alonso. Bases de Datos de Imágenes: Arquitectura de los Sistemas de Recuperación de Imágenes Basados en Contenido. 2005.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleDetector de Personas con Armas de Fuego a Partir de un Sistema de Visión Artificial Basado en el Análisis de Posturas Corporales


Este ítem pertenece a la siguiente institución