dc.contributorMartínez, Carlos Alberto
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000115757
dc.contributorUniversidad Santo Tomás
dc.creatorZea Higuera, Alberto
dc.date.accessioned2023-02-07T01:51:53Z
dc.date.accessioned2023-06-12T15:18:32Z
dc.date.available2023-02-07T01:51:53Z
dc.date.available2023-06-12T15:18:32Z
dc.date.created2023-02-07T01:51:53Z
dc.date.issued2022-12-14
dc.identifierZea Higuera, A. (s.f.). Predicción de la producción diaria de leche en bovinos Gyr a través de métodos de aprendizaje supervisado. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio Institucional.
dc.identifierhttp://hdl.handle.net/11634/49397
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6657909
dc.description.abstractThe Asociación Colombiana de Criadores de Ganado Cebú - ASOCEBU, has interest in developing a machine to predict total daily milk yield using partial production measurements in Gyr cattle and, in particular, answering two questions: 1) can a reference predictive method be outperformed by locally developed methods? 2) which one of the two partial records (AM or PM) has a better predictive performance? Therefore, the objective of this paper was to develop a predictive machine for daily milk yield in Gyr cattle using partial records, milking interval, days in milk, and parity (n=13806), by implementing supervised learning methods. Besides the reference predictive machine, several combinations of input variables and model or learning method were considered. Arti cial neural networks, support vector machines, random forests, and linear regression with location parameters estimated via least squares, or the shrinkage methods Ridge and Lasso were used. The predictive performance (PP) was assessed through crossvalidation using the following error functions: square root of mean square error (RMSE) and mean absolute error (MAE). It was found that an arti cial neural network with a single hidden layer and the AM partial record, milking interval, parity and days in milk as input variables had the best PP (RMSE=1.5042, MAE=1.1389), but in general, the performance of the methods was similar. All machines whose parameters were learned using local data outperformed the reference method and the morning partial records showed a better PP than those from the afternoon. These results permit guiding ASOCEBU's milk control program and generate a "tailormade" method to predict total daily milk yield of Gyr cattle in Colombia, a relevant component of the genetic improvement and productivity modelling programs of this breed.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherMaestría Estadística Aplicada
dc.publisherFacultad de Estadística
dc.relationBerry, D. P., Buckley, F. y Dillon, P. (2007), `Body condition score and live-weight e ects on milk production in irish holstein-friesian dairy cows', Animal 1(9), 1351-1359.
dc.relationBishop, C. M. (2006), `Linear models for classi cation', Pattern recognition and machine learning pp. 179-224.
dc.relationCassandro, M., Carnier, P., Gallo, L., Mantovani, R., Contiero, B., Bittante, G. y Jansen, G. (1995), `Bias and accuracy of single milking testing schemes to estimate daily and lactation milk yield', Journal of dairy science 78(12), 2884-2893.
dc.relationCerón Muñoz, M. F., Corrales Álvarez, J. D. y Ramírez Arias, J. P. (2017), `Predicción de la producción de leche, porcentaje de grasa y proteína diaria a partir de registros del ordeño de la mañana o de la tarde en vacas holstein en pastoreo', Livestock Research for Rural Development 29(9), 166.
dc.relationDelorenzo, M. A. y Wiggans, G. R. (1986), `Factors for estimating daily yield of milk, fat, and protein from a single milking for herds milked twice a day', Journal of Dairy Science 69(9), 2386-2394.
dc.relationFerro, D., Gil, J., Jiménez, A., Manrique, C. y Martínez, C. A. (2022), `Estimation of lactation curves of gyr cattle and some associated production parameters in the colombian low tropic', Revista Colombiana de Ciencias Pecuarias 35(1).
dc.relationGrzesiak, W., Lacroix, R., Wójcik, J. y Blaszczyk, P. (2003), `A comparison of neural network and multiple regression predictions for 305-day lactation yield using partial lactation records', Canadian Journal of Animal Science 83(2), 307-310.
dc.relationHargrove, G. L. y Gilbert, G. R. (1984), `Differences in morning and evening sample milkings and adjustment to daily weights and percents', Journal of Dairy Science 67(1), 194-200.
dc.relationHastie, T., Tibshirani, R., Friedman, J. H. y Friedman, J. H. (2009), The elements of statistical learning: data mining, inference, and prediction, Vol. 2, Springer.
dc.relationICAR (2016), `Knowledge Management in Agriculture', THE GLOBAL STANDARD FOR LIVESTOCK DATA . *http://www.icar.org.in/en/information-resources.htm
dc.relationJames, G., Witten, D., Hastie, T. y Tibshirani, R. (2013), An introduction to statistical learning, Vol. 112, Springer.
dc.relationLee, D. y Min, H. (2013), `Estimation of daily milk yields from am/pm milking records', Journal of Animal Science and Technology 55(6), 489-500.
dc.relationLiu, Z., Reents, R., Reinhardt, F. y Kuwan, K. (2000), `Approaches to estimating daily yield from single milk testing schemes and use of am-pm records in test-day model genetic evaluation in dairy cattle', Journal of Dairy Science 83(11), 2672{2682.
dc.relationLo, A., Cherno , H., Zheng, T. y Lo, S.-H. (2015), `Why signi cant variables aren't automatically good predictors', Proceedings of the National Academy of Sciences 112(45), 13892-13897.
dc.relationR Core Team (2021), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. *https://www.R-project.org/
dc.relationRodríguez Neira, J. D., Correa Londoño, G. A. y Echeverri Zuluaga, J. J. (2013), `Prediction models for total milk yield and fat percentage using partial samples', Revista Facultad Nacional de Agronomía Medellín 66(1), 6909-6917.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titlePredicción de la producción diaria de leche en bovinos Gyr a través de métodos de aprendizaje supervisado


Este ítem pertenece a la siguiente institución