dc.contributor | Martínez, Carlos Alberto | |
dc.contributor | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000115757 | |
dc.contributor | Universidad Santo Tomás | |
dc.creator | Zea Higuera, Alberto | |
dc.date.accessioned | 2023-02-07T01:51:53Z | |
dc.date.accessioned | 2023-06-12T15:18:32Z | |
dc.date.available | 2023-02-07T01:51:53Z | |
dc.date.available | 2023-06-12T15:18:32Z | |
dc.date.created | 2023-02-07T01:51:53Z | |
dc.date.issued | 2022-12-14 | |
dc.identifier | Zea Higuera, A. (s.f.). Predicción de la producción diaria de leche en bovinos Gyr a través de métodos de aprendizaje supervisado. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio Institucional. | |
dc.identifier | http://hdl.handle.net/11634/49397 | |
dc.identifier | reponame:Repositorio Institucional Universidad Santo Tomás | |
dc.identifier | instname:Universidad Santo Tomás | |
dc.identifier | repourl:https://repository.usta.edu.co | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6657909 | |
dc.description.abstract | The Asociación Colombiana de Criadores de Ganado Cebú - ASOCEBU, has interest
in developing a machine to predict total daily milk yield using partial production
measurements in Gyr cattle and, in particular, answering two questions:
1) can a reference predictive method be outperformed by locally developed methods?
2) which one of the two partial records (AM or PM) has a better predictive
performance? Therefore, the objective of this paper was to develop a predictive
machine for daily milk yield in Gyr cattle using partial records, milking interval,
days in milk, and parity (n=13806), by implementing supervised learning methods.
Besides the reference predictive machine, several combinations of input variables
and model or learning method were considered. Arti cial neural networks, support
vector machines, random forests, and linear regression with location parameters
estimated via least squares, or the shrinkage methods Ridge and Lasso were used.
The predictive performance (PP) was assessed through crossvalidation using the
following error functions: square root of mean square error (RMSE) and mean
absolute error (MAE). It was found that an arti cial neural network with a single
hidden layer and the AM partial record, milking interval, parity and days in milk
as input variables had the best PP (RMSE=1.5042, MAE=1.1389), but in general,
the performance of the methods was similar. All machines whose parameters
were learned using local data outperformed the reference method and the morning
partial records showed a better PP than those from the afternoon. These results
permit guiding ASOCEBU's milk control program and generate a "tailormade"
method to predict total daily milk yield of Gyr cattle in Colombia, a relevant
component of the genetic improvement and productivity modelling programs of
this breed. | |
dc.language | spa | |
dc.publisher | Universidad Santo Tomás | |
dc.publisher | Maestría Estadística Aplicada | |
dc.publisher | Facultad de Estadística | |
dc.relation | Berry, D. P., Buckley, F. y Dillon, P. (2007), `Body condition score and live-weight e ects on milk production in irish holstein-friesian dairy cows', Animal 1(9), 1351-1359. | |
dc.relation | Bishop, C. M. (2006), `Linear models for classi cation', Pattern recognition and machine learning pp. 179-224. | |
dc.relation | Cassandro, M., Carnier, P., Gallo, L., Mantovani, R., Contiero, B., Bittante, G. y Jansen, G. (1995), `Bias and accuracy of single milking testing schemes to estimate daily and lactation milk yield', Journal of dairy science 78(12), 2884-2893. | |
dc.relation | Cerón Muñoz, M. F., Corrales Álvarez, J. D. y Ramírez Arias, J. P. (2017), `Predicción de la producción de leche, porcentaje de grasa y proteína diaria a partir de registros del ordeño de la mañana o de la tarde en vacas holstein en pastoreo', Livestock Research for Rural Development 29(9), 166. | |
dc.relation | Delorenzo, M. A. y Wiggans, G. R. (1986), `Factors for estimating daily yield of milk, fat, and protein from a single milking for herds milked twice a day', Journal of Dairy Science 69(9), 2386-2394. | |
dc.relation | Ferro, D., Gil, J., Jiménez, A., Manrique, C. y Martínez, C. A. (2022), `Estimation of lactation curves of gyr cattle and some associated production parameters in the colombian low tropic', Revista Colombiana de Ciencias Pecuarias 35(1). | |
dc.relation | Grzesiak, W., Lacroix, R., Wójcik, J. y Blaszczyk, P. (2003), `A comparison of neural network and multiple regression predictions for 305-day lactation yield using partial lactation records', Canadian Journal of Animal Science 83(2), 307-310. | |
dc.relation | Hargrove, G. L. y Gilbert, G. R. (1984), `Differences in morning and evening sample milkings and adjustment to daily weights and percents', Journal of Dairy Science 67(1), 194-200. | |
dc.relation | Hastie, T., Tibshirani, R., Friedman, J. H. y Friedman, J. H. (2009), The elements of statistical learning: data mining, inference, and prediction, Vol. 2, Springer. | |
dc.relation | ICAR (2016), `Knowledge Management in Agriculture', THE GLOBAL STANDARD FOR LIVESTOCK DATA . *http://www.icar.org.in/en/information-resources.htm | |
dc.relation | James, G., Witten, D., Hastie, T. y Tibshirani, R. (2013), An introduction to statistical learning, Vol. 112, Springer. | |
dc.relation | Lee, D. y Min, H. (2013), `Estimation of daily milk yields from am/pm milking records', Journal of Animal Science and Technology 55(6), 489-500. | |
dc.relation | Liu, Z., Reents, R., Reinhardt, F. y Kuwan, K. (2000), `Approaches to estimating daily yield from single milk testing schemes and use of am-pm records in test-day model genetic evaluation in dairy cattle', Journal of Dairy Science 83(11), 2672{2682. | |
dc.relation | Lo, A., Cherno , H., Zheng, T. y Lo, S.-H. (2015), `Why signi cant variables aren't automatically good predictors', Proceedings of the National Academy of Sciences 112(45), 13892-13897. | |
dc.relation | R Core Team (2021), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. *https://www.R-project.org/ | |
dc.relation | Rodríguez Neira, J. D., Correa Londoño, G. A. y Echeverri Zuluaga, J. J. (2013), `Prediction models for total milk yield and fat percentage using partial samples', Revista Facultad Nacional de Agronomía Medellín 66(1), 6909-6917. | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | |
dc.rights | Abierto (Texto Completo) | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | |
dc.title | Predicción de la producción diaria de leche en bovinos Gyr a través de métodos de aprendizaje supervisado | |