dc.creator | Franco Guzmán, Ediguer Enrique | |
dc.creator | Reyna, Carlos A. B. | |
dc.creator | Lemos Durán, Alberto | |
dc.creator | Buiochi, Flávio | |
dc.date.accessioned | 2023-05-17T16:44:34Z | |
dc.date.accessioned | 2023-06-06T15:33:41Z | |
dc.date.available | 2023-05-17T16:44:34Z | |
dc.date.available | 2023-06-06T15:33:41Z | |
dc.date.created | 2023-05-17T16:44:34Z | |
dc.date.issued | 2022-09 | |
dc.identifier | 14248220 | |
dc.identifier | https://hdl.handle.net/10614/14754 | |
dc.identifier | Universidad Autónoma de Occidente | |
dc.identifier | Repositorio Educativo Digital UAO | |
dc.identifier | https://red.uao.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6649786 | |
dc.description.abstract | This work proposes the slope of the phase spectrum as a signal processing parameter
for the ultrasonic monitoring of the water content of water-in-crude oil emulsions. Experimental
measurements, with water volume fractions from 0 to 0.48 and test temperatures of 20 ◦C, 25 ◦C, and
30 ◦C, were carried out using ultrasonic measurement devices operating in transmission–reception
and backscattering modes. The results show the phase slope depends on the water volume fraction
and, to a lesser extent, on the size of the emulsion droplets, leading to a stable behavior over time.
Conversely, the behavior of the phase slope as a function of the volume fraction is monotonic with
low dispersion. Fitting a power function to the experimental data provides calibration curves that can
be used to determine the water content with percentage relative error up to 70% for a water volume
fraction of 0.06, but less than 10% for water volume fractions greater than 0.06. Furthermore, the
methodology works over a wide range of volume fractions. | |
dc.language | eng | |
dc.publisher | MDPI | |
dc.publisher | Basel, Suiza | |
dc.relation | 11 | |
dc.relation | 19 | |
dc.relation | 1 | |
dc.relation | 22 | |
dc.relation | Franco Guzmán, E.E.; Reyna, C.A.B.;Durán, A.L.; Buiochi, F. Ultrasonic Monitoring of the Water Content in Concentrated Water–Petroleum Emulsions Using the Slope of the Phase Spectrum. Sensors, 22(9), pp. 1-11 | |
dc.relation | Sensors | |
dc.relation | Umar, A.A.; Saaid, I.B.M.; Sulaimon, A.A.; Pilus, R.B.M. A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids. J. Pet. Sci. Eng. 2018, 165, 673–690. | |
dc.relation | Goddeeris, C.; Cuppo, F.; Reynaers, H.; Bouwman, W.; Van den Mooter, G. Light scattering measurements on microemulsions: Estimation of droplet sizes. Int. J. Pharm. 2006, 312, 187–195 | |
dc.relation | Alvarez, G.; Jestin, J.; Argillier, J.F.; Langevin, D. Small-Angle Neutron Scattering Study of Crude Oil Emulsions: Structure of the Oil-Water Interfaces. Langmuir 2009, 25, 3985–3990 | |
dc.relation | Åbro, E.; Johansen, G. Improved void fraction determination by means of multibeam gamma-ray attenuation measurements. Flow Meas. Instrum. 1999, 10, 99–108 | |
dc.relation | Harhira, A.; Haddad, J.E.; Sabsabi, M.; Blouin, A. Evaluation of LIBS technique for rapid determination of total clays in oil sands ores. In Proceedings of the OSA Optical Sensors and Sensing Congress 2021 (AIS, FTS, HISE, SENSORS, ES), Washington, DC, USA, 19–23 July 2021; Optica Publishing Group: Washington, DC, USA, 2021; p. AM5D.5. [ | |
dc.relation | Jaworski, A.J.; Dyakowski, T. Measurements of oil–water separation dynamics in primary separation systems using distributed capacitance sensors. Flow Meas. Instrum. 2005, 16, 113–127 | |
dc.relation | Pinfield, V.J. Advances in ultrasonic monitoring of oil-in-water emulsions. Food Hydrocoll. 2014, 42, 48–55. | |
dc.relation | Shah, A.; Fishwick, R.; Wood, J.; Leeke, G.; Rigby, S.; Greaves, M. A review of novel techniques for heavy oil and bitumen extraction and upgrading. Energy Environ. Sci. 2010, 3, 700–714. | |
dc.relation | Durán, A.L.; Franco, E.E.; Reyna, C.A.B.; Pérez, N.; Tsuzuki, M.S.G.; Buiochi, F. Water Content Monitoring in Water-in-Crude-Oil Emulsions Using an Ultrasonic Multiple-Backscattering Sensor. Sensors 2021, 21, 5088 | |
dc.relation | Wormley, S.J.; Forouraghi, K.; Li, Y.; Thompson, R.B.; Papadakis, E.P. Application of a fourier transform-phase-slope technique to the design of an instrument for the ultrasonic measurement of texture and stress. In Review of Progress in Quantitative Nondestructive Evaluation; Springer: Boston, MA, USA, 1990; pp. 951–958 | |
dc.relation | Fariñas, M.D.; Sancho-Knapik, D.; Peguero-Pina, J.J.; Gil-Pelegrín, E.; Gómez Álvarez-Arenas, T.E. Contact-less, non-resonant and high-frequency ultrasonic technique: Towards a universal tool for plant leaf study. Comput. Electron. Agric. 2022, 199, 107160. | |
dc.relation | Amioka, N.; Takaya, Y.; Nakamura, K.; Kondo, M.; Akazawa, K.; Ohno, Y.; Ichikawa, K.; Nakayama, R.; Saito, Y.; Akagi, S.; et al. Impact of shear wave dispersion slope analysis for assessing the severity of myocarditis. Sci. Rep. 2022, 12, 8776 | |
dc.relation | Oppenheim, A.V.; Willsky, A.S. Signals and Systems, 2nd ed.; Pearson: Upper Saddle River, NJ, USA, 1996 | |
dc.relation | Hart, A. A review of technologies for transporting heavy crude oil and bitumen via pipelines. J. Pet. Explor. Prod. Technol. 2014, 4, 327–336 | |
dc.relation | Ashrafizadeh, S.; Kamran, M. Emulsification of heavy crude oil in water for pipeline transportation. J. Pet. Sci. Eng. 2010, 71, 205–211. | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | Derechos reservados - MDPI, 2022 | |
dc.title | Ultrasonic monitoring of the water content in concentrated water–petroleum emulsions using the slope of the phase spectrum | |
dc.type | Artículo de revista | |