dc.creatorFranco Guzmán, Ediguer Enrique
dc.creatorReyna, Carlos A. B.
dc.creatorLemos Durán, Alberto
dc.creatorBuiochi, Flávio
dc.date.accessioned2023-05-17T16:44:34Z
dc.date.accessioned2023-06-06T15:33:41Z
dc.date.available2023-05-17T16:44:34Z
dc.date.available2023-06-06T15:33:41Z
dc.date.created2023-05-17T16:44:34Z
dc.date.issued2022-09
dc.identifier14248220
dc.identifierhttps://hdl.handle.net/10614/14754
dc.identifierUniversidad Autónoma de Occidente
dc.identifierRepositorio Educativo Digital UAO
dc.identifierhttps://red.uao.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6649786
dc.description.abstractThis work proposes the slope of the phase spectrum as a signal processing parameter for the ultrasonic monitoring of the water content of water-in-crude oil emulsions. Experimental measurements, with water volume fractions from 0 to 0.48 and test temperatures of 20 ◦C, 25 ◦C, and 30 ◦C, were carried out using ultrasonic measurement devices operating in transmission–reception and backscattering modes. The results show the phase slope depends on the water volume fraction and, to a lesser extent, on the size of the emulsion droplets, leading to a stable behavior over time. Conversely, the behavior of the phase slope as a function of the volume fraction is monotonic with low dispersion. Fitting a power function to the experimental data provides calibration curves that can be used to determine the water content with percentage relative error up to 70% for a water volume fraction of 0.06, but less than 10% for water volume fractions greater than 0.06. Furthermore, the methodology works over a wide range of volume fractions.
dc.languageeng
dc.publisherMDPI
dc.publisherBasel, Suiza
dc.relation11
dc.relation19
dc.relation1
dc.relation22
dc.relationFranco Guzmán, E.E.; Reyna, C.A.B.;Durán, A.L.; Buiochi, F. Ultrasonic Monitoring of the Water Content in Concentrated Water–Petroleum Emulsions Using the Slope of the Phase Spectrum. Sensors, 22(9), pp. 1-11
dc.relationSensors
dc.relationUmar, A.A.; Saaid, I.B.M.; Sulaimon, A.A.; Pilus, R.B.M. A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids. J. Pet. Sci. Eng. 2018, 165, 673–690.
dc.relationGoddeeris, C.; Cuppo, F.; Reynaers, H.; Bouwman, W.; Van den Mooter, G. Light scattering measurements on microemulsions: Estimation of droplet sizes. Int. J. Pharm. 2006, 312, 187–195
dc.relationAlvarez, G.; Jestin, J.; Argillier, J.F.; Langevin, D. Small-Angle Neutron Scattering Study of Crude Oil Emulsions: Structure of the Oil-Water Interfaces. Langmuir 2009, 25, 3985–3990
dc.relationÅbro, E.; Johansen, G. Improved void fraction determination by means of multibeam gamma-ray attenuation measurements. Flow Meas. Instrum. 1999, 10, 99–108
dc.relationHarhira, A.; Haddad, J.E.; Sabsabi, M.; Blouin, A. Evaluation of LIBS technique for rapid determination of total clays in oil sands ores. In Proceedings of the OSA Optical Sensors and Sensing Congress 2021 (AIS, FTS, HISE, SENSORS, ES), Washington, DC, USA, 19–23 July 2021; Optica Publishing Group: Washington, DC, USA, 2021; p. AM5D.5. [
dc.relationJaworski, A.J.; Dyakowski, T. Measurements of oil–water separation dynamics in primary separation systems using distributed capacitance sensors. Flow Meas. Instrum. 2005, 16, 113–127
dc.relationPinfield, V.J. Advances in ultrasonic monitoring of oil-in-water emulsions. Food Hydrocoll. 2014, 42, 48–55.
dc.relationShah, A.; Fishwick, R.; Wood, J.; Leeke, G.; Rigby, S.; Greaves, M. A review of novel techniques for heavy oil and bitumen extraction and upgrading. Energy Environ. Sci. 2010, 3, 700–714.
dc.relationDurán, A.L.; Franco, E.E.; Reyna, C.A.B.; Pérez, N.; Tsuzuki, M.S.G.; Buiochi, F. Water Content Monitoring in Water-in-Crude-Oil Emulsions Using an Ultrasonic Multiple-Backscattering Sensor. Sensors 2021, 21, 5088
dc.relationWormley, S.J.; Forouraghi, K.; Li, Y.; Thompson, R.B.; Papadakis, E.P. Application of a fourier transform-phase-slope technique to the design of an instrument for the ultrasonic measurement of texture and stress. In Review of Progress in Quantitative Nondestructive Evaluation; Springer: Boston, MA, USA, 1990; pp. 951–958
dc.relationFariñas, M.D.; Sancho-Knapik, D.; Peguero-Pina, J.J.; Gil-Pelegrín, E.; Gómez Álvarez-Arenas, T.E. Contact-less, non-resonant and high-frequency ultrasonic technique: Towards a universal tool for plant leaf study. Comput. Electron. Agric. 2022, 199, 107160.
dc.relationAmioka, N.; Takaya, Y.; Nakamura, K.; Kondo, M.; Akazawa, K.; Ohno, Y.; Ichikawa, K.; Nakayama, R.; Saito, Y.; Akagi, S.; et al. Impact of shear wave dispersion slope analysis for assessing the severity of myocarditis. Sci. Rep. 2022, 12, 8776
dc.relationOppenheim, A.V.; Willsky, A.S. Signals and Systems, 2nd ed.; Pearson: Upper Saddle River, NJ, USA, 1996
dc.relationHart, A. A review of technologies for transporting heavy crude oil and bitumen via pipelines. J. Pet. Explor. Prod. Technol. 2014, 4, 327–336
dc.relationAshrafizadeh, S.; Kamran, M. Emulsification of heavy crude oil in water for pipeline transportation. J. Pet. Sci. Eng. 2010, 71, 205–211.
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos reservados - MDPI, 2022
dc.titleUltrasonic monitoring of the water content in concentrated water–petroleum emulsions using the slope of the phase spectrum
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución