dc.creator | Villota, Isabella | |
dc.creator | Calvo Echeverry, Paulo Cesar | |
dc.creator | Campo Salazar, Oscar Iván | |
dc.creator | Villarreal Gómez, Luis Jesús | |
dc.creator | Fonthal Rico, Faruk | |
dc.date.accessioned | 2023-05-19T15:50:48Z | |
dc.date.accessioned | 2023-06-06T15:28:38Z | |
dc.date.available | 2023-05-19T15:50:48Z | |
dc.date.available | 2023-06-06T15:28:38Z | |
dc.date.created | 2023-05-19T15:50:48Z | |
dc.date.issued | 2022-12-10 | |
dc.identifier | 2072666X | |
dc.identifier | https://hdl.handle.net/10614/14774 | |
dc.identifier | Universidad Autónoma de Occidente | |
dc.identifier | Repositorio Educativo Digital UAO | |
dc.identifier | https://red.uao.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6649772 | |
dc.description.abstract | Diabetes mellitus is an endocrine disorder that affects glucose metabolism, making the
body unable to effectively use the insulin it produces. Transdermal drug delivery (TDD) has attracted
strong interest from researchers, as it allows minimally invasive and painless insulin administration,
showing advantages over conventional delivery methods. Systems composed of microneedles (MNs)
assembled in a transdermal patch provide a unique route of administration, which is innovative with
promising results. This paper presents the design of a transdermal patch composed of 25 microneedles
manufactured with 3D printing by stereolithography with a class 1 biocompatible resin and a printing
angle of 0◦. Finite element analysis with ANSYS software is used to obtain the mechanical behavior
of the microneedle (MN). The values obtained through the analysis were: a Von Misses stress of
18.057 MPa, a maximum deformation of 2.179 × 10−3, and a safety factor of 4. Following this, through
a flow simulation, we find that a pressure of 1.084 Pa and a fluid velocity of 4.800 m
s were necessary to
ensure a volumetric flow magnitude of 4.447 × 10−5 cm3
s . Furthermore, the parameters found in this
work are of great importance for the future implementation of a transdermal drug delivery device | |
dc.language | eng | |
dc.publisher | MDPI | |
dc.publisher | Basel, Suiza | |
dc.relation | 11 | |
dc.relation | 12 | |
dc.relation | 1 | |
dc.relation | 13 | |
dc.relation | Villota, I.; Calvo Echeverry, P.C., Campo Salazar, O.I., Villarreal Gómez, L.J., Fonthal Rico, F. Manufacturing of a Transdermal Patch in 3D Printing. Micromachines, 13(12), pp. 1-11 | |
dc.relation | Micromachines | |
dc.relation | Aldawood, F.K.; Andar, A.; Desai, S. A Comprehensive Review of Microneedles: Types, Materials, Processes, Characterizations and Applications. Polymers 2021, 13, 2815 | |
dc.relation | Llaguno de Mora, R.I.; Freire López, M.E.; Semanate Bautista, N.M.; Domínguez Freire, M.F.; Domínguez Freire, N.D.; Semanate Bautista, S.D. Complicaciones musculoesqueléticas de la diabetes mellitus. Rev. Cuba. Reumatol. 2019, 21, e47. | |
dc.relation | Makvandi, P.; Jamaledin, R.; Chen, G.; Baghbantaraghdari, Z.; Zare, E.N.; Di Natale, C.; Onesto, V.; Vecchione, R.; Lee, J.; Tay, F.R.; et al. Stimuli-responsive transdermal microneedle patches. Mater. Today 2021, 47, 206–222 | |
dc.relation | Shingade, G.M. Review on: Recent Trend on Transdermal Drug Delivery System. J. Drug Deliv. Ther. 2012, 2, 2012 | |
dc.relation | Battisti, M.; Vecchione, R.; Casale, C.; Pennacchio, F.A.; Lettera, V.; Jamaledin, R.; Profeta, M.; Di Natale, C.; Imparato, G.; Urciuolo, F.; et al. Non-invasive Production of Multi-Compartmental Biodegradable Polymer Microneedles for Controlled Intradermal Drug Release of Labile Molecules. Front. Bioeng. Biotechnol. 2019, 7, 1–14 | |
dc.relation | Economidou, S.N.; Pere, C.; Reid, A.; Uddin, M.J.; Windmill, J.; Lamprou, D.A.; Douroumis, D. 3D printed microneedle patches using stereolithography (SLA)for intradermal insulin delivery. Mater. Sci. Eng. C 2019, 102, 743–755 | |
dc.relation | Wu, M.; Zhang, Y.; Huang, H.; Li, J.; Liu, H.; Guo, Z.; Xue, L.; Liu, S.; Lei, Y. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes. Mater. Sci. Eng. C 2020, 117, 111299. | |
dc.relation | Villota, I.; Calvo, P.C.; Campo, O.I.; Fonthal, F. Microneedles: One-Plane Bevel-Tipped Fabrication by 3D-Printing Processes. Molecules 2022, 27, 6634 | |
dc.relation | Ge, G.; Wang, Q.; Zhang, Y.; Alshareef, H.; Dong, X. 3D Printing of Hydrogels for Stretchable Ionotronic Devices. Adv. Funct. Mater. 2021, 31, 2107437 | |
dc.relation | Janphuang, P.; Laebua, M.; Sriphung, C.; Taweewat, P.; Sirichalarmkul, A.; Sukjantha, K.; Promsawat, N.; Leuasoongnoen, P.; Suphachiaraphan, S.; Phimol, K.; et al. Polymer Based Microneedle Patch Fabricated Using Microinjection Moulding. MATEC Web Conf. 2018, 192, 01039 | |
dc.relation | Sholihah, M.; Sean, W.Y. Numerical Simulation on the Dissociation, Formation, and Recovery of Gas Hydrates on Microscale Approach. Molecules. 2021, 26, 5021. | |
dc.relation | Pettis, R.J.; Harvey, A.J. Microneedle delivery: Clinical studies and emerging medical applications. Ther. Deliv. 2012, 3, 357–371. | |
dc.relation | Giri Nandagopal, M.S.; Antony, R.; Rangabhashiyam, S.; Sreekumar, N.; Selvaraju, N. Overview of microneedle system: A third-generation transdermal drug delivery approach. Microsyst. Technol. 2014, 20, 1249–1272 | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | Derechos Reservados Micromachines | |
dc.title | Manufacturing of a transdermal patch in 3D printing | |
dc.type | Artículo de revista | |