dc.creatorVillota, Isabella
dc.creatorCalvo Echeverry, Paulo Cesar
dc.creatorCampo Salazar, Oscar Iván
dc.creatorVillarreal Gómez, Luis Jesús
dc.creatorFonthal Rico, Faruk
dc.date.accessioned2023-05-19T15:50:48Z
dc.date.accessioned2023-06-06T15:28:38Z
dc.date.available2023-05-19T15:50:48Z
dc.date.available2023-06-06T15:28:38Z
dc.date.created2023-05-19T15:50:48Z
dc.date.issued2022-12-10
dc.identifier2072666X
dc.identifierhttps://hdl.handle.net/10614/14774
dc.identifierUniversidad Autónoma de Occidente
dc.identifierRepositorio Educativo Digital UAO
dc.identifierhttps://red.uao.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6649772
dc.description.abstractDiabetes mellitus is an endocrine disorder that affects glucose metabolism, making the body unable to effectively use the insulin it produces. Transdermal drug delivery (TDD) has attracted strong interest from researchers, as it allows minimally invasive and painless insulin administration, showing advantages over conventional delivery methods. Systems composed of microneedles (MNs) assembled in a transdermal patch provide a unique route of administration, which is innovative with promising results. This paper presents the design of a transdermal patch composed of 25 microneedles manufactured with 3D printing by stereolithography with a class 1 biocompatible resin and a printing angle of 0◦. Finite element analysis with ANSYS software is used to obtain the mechanical behavior of the microneedle (MN). The values obtained through the analysis were: a Von Misses stress of 18.057 MPa, a maximum deformation of 2.179 × 10−3, and a safety factor of 4. Following this, through a flow simulation, we find that a pressure of 1.084 Pa and a fluid velocity of 4.800 m s were necessary to ensure a volumetric flow magnitude of 4.447 × 10−5 cm3 s . Furthermore, the parameters found in this work are of great importance for the future implementation of a transdermal drug delivery device
dc.languageeng
dc.publisherMDPI
dc.publisherBasel, Suiza
dc.relation11
dc.relation12
dc.relation1
dc.relation13
dc.relationVillota, I.; Calvo Echeverry, P.C., Campo Salazar, O.I., Villarreal Gómez, L.J., Fonthal Rico, F. Manufacturing of a Transdermal Patch in 3D Printing. Micromachines, 13(12), pp. 1-11
dc.relationMicromachines
dc.relationAldawood, F.K.; Andar, A.; Desai, S. A Comprehensive Review of Microneedles: Types, Materials, Processes, Characterizations and Applications. Polymers 2021, 13, 2815
dc.relationLlaguno de Mora, R.I.; Freire López, M.E.; Semanate Bautista, N.M.; Domínguez Freire, M.F.; Domínguez Freire, N.D.; Semanate Bautista, S.D. Complicaciones musculoesqueléticas de la diabetes mellitus. Rev. Cuba. Reumatol. 2019, 21, e47.
dc.relationMakvandi, P.; Jamaledin, R.; Chen, G.; Baghbantaraghdari, Z.; Zare, E.N.; Di Natale, C.; Onesto, V.; Vecchione, R.; Lee, J.; Tay, F.R.; et al. Stimuli-responsive transdermal microneedle patches. Mater. Today 2021, 47, 206–222
dc.relationShingade, G.M. Review on: Recent Trend on Transdermal Drug Delivery System. J. Drug Deliv. Ther. 2012, 2, 2012
dc.relationBattisti, M.; Vecchione, R.; Casale, C.; Pennacchio, F.A.; Lettera, V.; Jamaledin, R.; Profeta, M.; Di Natale, C.; Imparato, G.; Urciuolo, F.; et al. Non-invasive Production of Multi-Compartmental Biodegradable Polymer Microneedles for Controlled Intradermal Drug Release of Labile Molecules. Front. Bioeng. Biotechnol. 2019, 7, 1–14
dc.relationEconomidou, S.N.; Pere, C.; Reid, A.; Uddin, M.J.; Windmill, J.; Lamprou, D.A.; Douroumis, D. 3D printed microneedle patches using stereolithography (SLA)for intradermal insulin delivery. Mater. Sci. Eng. C 2019, 102, 743–755
dc.relationWu, M.; Zhang, Y.; Huang, H.; Li, J.; Liu, H.; Guo, Z.; Xue, L.; Liu, S.; Lei, Y. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes. Mater. Sci. Eng. C 2020, 117, 111299.
dc.relationVillota, I.; Calvo, P.C.; Campo, O.I.; Fonthal, F. Microneedles: One-Plane Bevel-Tipped Fabrication by 3D-Printing Processes. Molecules 2022, 27, 6634
dc.relationGe, G.; Wang, Q.; Zhang, Y.; Alshareef, H.; Dong, X. 3D Printing of Hydrogels for Stretchable Ionotronic Devices. Adv. Funct. Mater. 2021, 31, 2107437
dc.relationJanphuang, P.; Laebua, M.; Sriphung, C.; Taweewat, P.; Sirichalarmkul, A.; Sukjantha, K.; Promsawat, N.; Leuasoongnoen, P.; Suphachiaraphan, S.; Phimol, K.; et al. Polymer Based Microneedle Patch Fabricated Using Microinjection Moulding. MATEC Web Conf. 2018, 192, 01039
dc.relationSholihah, M.; Sean, W.Y. Numerical Simulation on the Dissociation, Formation, and Recovery of Gas Hydrates on Microscale Approach. Molecules. 2021, 26, 5021.
dc.relationPettis, R.J.; Harvey, A.J. Microneedle delivery: Clinical studies and emerging medical applications. Ther. Deliv. 2012, 3, 357–371.
dc.relationGiri Nandagopal, M.S.; Antony, R.; Rangabhashiyam, S.; Sreekumar, N.; Selvaraju, N. Overview of microneedle system: A third-generation transdermal drug delivery approach. Microsyst. Technol. 2014, 20, 1249–1272
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos Reservados Micromachines
dc.titleManufacturing of a transdermal patch in 3D printing
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución