dc.contributorCampo, Oscar
dc.contributorGonzalez-Vargas, Andres Mauricio
dc.creatorLoaiza Naranjo, Liceth Tatiana
dc.date.accessioned2023-01-16T17:59:26Z
dc.date.accessioned2023-06-06T15:28:19Z
dc.date.available2023-01-16T17:59:26Z
dc.date.available2023-06-06T15:28:19Z
dc.date.created2023-01-16T17:59:26Z
dc.date.issued2022-11-18
dc.identifierhttps://hdl.handle.net/10614/14500
dc.identifierUniversidad Autónoma de Occidente
dc.identifierRepositorio Educativo Digital
dc.identifierhttps://red.uao.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6649767
dc.description.abstractLa terapia como parte de la intervención en una persona con algún tipo de discapacidad es una oportunidad para mejorar sus condiciones de vida, sin embargo, la terapia convencional, aunque irremplazable, ha demostrado algunas desventajas de accesibilidad universal al no considerar las limitaciones de algunos de los pacientes, suplidas ahora por el acompañamiento con tecnologías emergentes. El desarrollo de una BCI en conjunto con un sistema tecnológico permitirá eliminar este tipo de barreras, cuya solución dependerá de la efectividad del reconocimiento de patrones de onda cerebrales captados desde un electroencefalograma, empleando para ello sistemas de bajo costo.
dc.languagespa
dc.publisherUniversidad Autónoma de Occidente
dc.publisherMaestría en Ingeniería de Desarrollo de Productos
dc.publisherFacultad de Ingeniería
dc.publisherCali
dc.relationLoaiza Naranjo, L. T. (2022 Diseño de una interfaz cerebro computador (BCI) para la interacción con un sistema de rehabilitación de miembro superior (Tesis). Universidad Autónoma de Occidente. Cali. Colombia. https://red.uao.edu.co/handle/10614/14500
dc.relationAbdulkader, S. N., Atia, A., y Mostafa, M. S. M. (2015). Brain computer interfacing: Applications and challenges. Egyptian Informatics Journal, 16(2), 213-230. https://www.sciencedirect.com/science/article/pii/S1110866515000237
dc.relationAggarwal, S., y Chugh, N. (2019). Signal processing techniques for motor imagery brain computer interface: A review. Array, 1, 100003. https://www.sciencedirect.com/science/article/pii/S2590005619300037
dc.relationAlcaide, R. (2017). Evaluating a Novel Brain-Computer Interface and EEG Biomarkers for Cognitive Assessment in Children with Cerebral Palsy Doctoral dissertation, University of Michigan. https://deepblue.lib.umich.edu/bitstream/handle/2027.42/136949/pharoram_1.pdf?sequence=1
dc.relationAlonso, L., y Mercado, V. (2017). Enrichment of human-computer interaction in brain-computer interfaces via virtual environments. Computational Intelligence and Neuroscience, 2017. https://www.hindawi.com/journals/cin/2017/6076913/
dc.relationAlonso, N., y Fernando, L. (2012). Clasificación de características de electroencefalogramas en sistemas Brain Computer Interface basados en ritmos sensoriomotores. Tesis de maestría, Universidad de Valladolid. https://uvadoc.uva.es/bitstream/handle/10324/2656/TFM-G93.pdf?sequence=1
dc.relationAng, K. K., y Guan, C. (2013). Brain-computer interface in stroke rehabilitation. Journal of Computing Science and Engineering, 7(2), 139-146. https://koreascience.kr/article/JAKO201319133640292.pdf
dc.relationAnopas, D., Horapong, M., y Wongsawat, Y. (2013, August). BCI-based neurorehabilitation and prediction system for stroke patients. In Proceedings of the 7th international convention on rehabilitation engineering and assistive technology (pp. 1-4). https://dl.acm.org/doi/abs/10.5555/2567429.2567462
dc.relationBeltrán, D. M., y Lombana González, M. E. (2017). Consecuencias y efectos de los videojuegos en niños con edades de 7 a 12 años (Bachelor's thesis, Universidad de Bogotá Jorge Tadeo Lozano). https://expeditiorepositorio.utadeo.edu.co/bitstream/handle/20.500.12010/1524/T430.p df
dc.relationBonnet, L., Lotte, F., y Lécuyer, A. (2013). Two brains, one game: design and evaluation of a multiuser BCI video game based on motor imagery. IEEE Transactions on Computational Intelligence and AI in games, 5(2), 185-198. https://ieeexplore.ieee.org/document/6400237
dc.relationCameirão, M. S., i Badia, S. B., Oller, E. D., y Verschure, P. F. (2010). Neurorehabilitation using the virtual reality-based Rehabilitation Gaming System: methodology, design, psychometrics, usability and validation. Journal of neuroengineering and rehabilitation, 7(1), 48. https://jneuroengrehab.biomedcentral.com/articles/10.1186/1743-0003-7-48
dc.relationCardona, J. E. M. N. (2014). Clasificación de patrones de imaginación motora en una Interfaz Cerebro Computador de bajo costo usando software libre.
dc.relationCardona, J. E. M. (2014). Clasificación de patrones de imaginación motora en una interfaz cerebro computador de bajo costo usando software libre. Tesis de maestría, Universidad Tecnológica de Pereira. https://repositorio.utp.edu.co/server/api/core/bitstreams/515c03a8-970a-48ad8d07-074b5a03348d/content
dc.relationChacon-Murguia, M. I., y Rivas-Posada, E. (2020). Feature extraction evaluation for two motor imagery recognition based on common spatial patterns, time-frequency transformations and SVM. In 2020 International Joint Conference on Neural Networks (IJCNN) (pp. 1-7). IEEE. https://ieeexplore.ieee.org/abstract/document/9206638
dc.relationChan, A. Y. (2016). Biomedical device technology: principles and design. Charles C Thomas Publisher. Chen, Y., Garcia-Vergara, S., y Howard, A. M. (2015). Effect of a home-based virtual reality intervention for children with cerebral palsy using super pop vr evaluation metrics: a feasibility study. Rehabilitation research and practice, 2015. https://pubmed.ncbi.nlm.nih.gov/26457202/
dc.relationChen, C. Y., Wu, C. W., Lin, C. T., y Chen, S. A. (2014). A novel classification method for motor imagery based on Brain-Computer Interface. In 2014 International joint conference on neural networks (IJCNN) (pp. 4099-4102). IEEE. https://ieeexplore.ieee.org/document/6889535
dc.relationClerc, M., Bougrain, L., y Lotte, F. (Eds.). (2016). Brain-Computer Interfaces 1: Methods and Perspectives. John Wiley & Sons.
dc.relationColombia. Ministerio de Salud y Protección Social Oficina de Promoción Social (2018). Sala situacional de las Personas con Discapacidad (PCD). [Consultado: 10 de noviembre de 2019]. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/PS/salasituacional-discapacidad-junio-2018.pdf
dc.relationColombia. Ministerio de Salud y Protección Social Oficina de Promoción Social (2018). ABECÉ DE LA DISCAPACIDAD. [Consultado: 1 de diciembre de 2019]. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/PS/abece-de-ladiscapacidad.pdf
dc.relationDas, S., Tripathy, D., y Raheja, J. L. (2018). Real-time BCI System Design to Control Arduino Based Speed Controllable Robot Using EEG. Springer. https://link.springer.com/book/10.1007/978-981-13-3098-8
dc.relationDel Castillo, M. D., Serrano, J. I., Lerma, S., Martínez, I., y Rocon, E. (2018). Evaluación neurofisiológica del entrenamiento de la imaginación motora con realidad virtual en pacientes pediátricos con parálisis cerebral. Revista Iberoamericana de Automática e Informática industrial, 15(2), 174-179.
dc.relationDémas, J., Bourguignon, M., Périvier, M., De Tiège, X., Dinomais, M., y Van Bogaert, P. (2019). Mu rhythm: state of the art with special focus on cerebral palsy. Annals of physical and rehabilitation medicine. https://www.sciencedirect.com/science/article/pii/S1877065719300946
dc.relationDe Arquer, I., y Nogareda, C. (2000). NTP 544: Estimación de la carga mental de trabajo: el método NASA TLX. Madrid: Instituto Nacional de Higiene y Seguridad en el Trabajo, Ministerio de Trabajo y Seguridad Social del Gobierno de España. https://www.cso.go.cr/legislacion/notas_tecnicas_preventivas_insht/NTP%20544%20- %20Estimacion%20de%20la%20carga%20mental%20de%20trabajo%20el%20metodo%20NASA%20TLX.pdf
dc.relationDijkerman, H. C., Ietswaart, M., y Johnston, M. (2010). Motor imagery and the rehabilitation of movement disorders: an overview. The neurophysiological foundations of mental and motor imagery, 127-144. https://academic.oup.com/book/8403/chapterabstract/154138038?redirectedFrom=fulltext
dc.relationDi Nasso, P., Bacco Rodriguez, J. L., y Mansilla Montenegro, J. (2010). Toxina botulínica para la secreción descontrolada de saliva: Presentación de un caso. Revista de la Facultad de Odontología. Universidad Nacional de Cuyo, 4(1). https://bdigital.uncu.edu.ar/app/navegador/?idobjeto=5793
dc.relationElstob, D., y Secco, E. L. (2016). A low cost eeg based BCI prosthetic using motor imagery. arXiv preprint arXiv:1603.02869. https://arxiv.org/ftp/arxiv/papers/1603/1603.02869.pdf
dc.relationEscobar Ortiz, A. F. (2018). Diseño de un clasificador de señales EEG provenientes de una interfaz BCI utilizando redes neuronales para controlar un robot hexápodo. Tesis de pregrado, Universidad Autónoma de Occidente. https://red.uao.edu.co/handle/10614/10354?show=full
dc.relationHu, L., y Zhang, Z. (Eds.). (2019). EEG Signal Processing and Feature Extraction. Springer Singapore. https://link.springer.com/book/10.1007/978-981-13-9113-2 i
dc.relationBadia, S. B., Morgade, A. G., Samaha, H., y Verschure, P. F. M. J. (2012). Using a hybrid brain computer interface and virtual reality system to monitor and promote cortical reorganization through motor activity and motor imagery training. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(2), 174-181. https://ieeexplore.ieee.org/document/6363609
dc.relationIlyas, M. Z., Saad, P., Ahmad, M. I., y Ghani, A. R. I. (2016, November). Classification of EEG signals for brain-computer interface applications: Performance comparison. In 2016 International Conference on Robotics, Automation and Sciences (ICORAS) (pp. 1-4). IEEE. https://ieeexplore.ieee.org/abstract/document/7872610
dc.relationJackson, A., y Zimmermann, J. B. (2012). Neural interfaces for the brain and spinal cord— restoring motor function. Nature Reviews Neurology, 8(12), 690. https://pubmed.ncbi.nlm.nih.gov/23147846/
dc.relationJasper, H. H. (1958). The ten-twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol., 10, 370-375. https://pubmed.ncbi.nlm.nih.gov/10590970/
dc.relationKhan, M. A., Das, R., Iversen, H. K., y Puthusserypady, S. (2020). Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application. Computers in Biology and Medicine, 103843. https://www.sciencedirect.com/science/article/pii/S0010482520302031
dc.relationKim, Y. T., Lee, S. B., Kim, H., Jeong, J. H., Lee, S. W., y Kim, D. J. (2019). Exploring the Number of Repetitions in Trials for the Performance Convergence of Classification in Motor Imagery Task with Hand-Grasping. In 2019 7th International Winter Conference on Brain-Computer Interface (BCI) (pp. 1-4). IEEE.
dc.relationKing, Wang, McCrimmon, Chou, Do y Nenadic. (2014). Brain-computer interface driven functional electrical stimulation system for overground walking in spinal cord injury participant. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 1238-1242). IEEE. https://pubmed.ncbi.nlm.nih.gov/25570189/
dc.relationKübler, A., Holz, E. M., Riccio, A., Zickler, C., Kaufmann, T., Kleih, S. C., ... y Mattia, D. (2014). The user-centered design as novel perspective for evaluating the usability of BCIcontrolled applications. PloS one, 9(12), e112392. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0112392
dc.relationLaurie Rose, C., Frey, M., Ennis, A., y Zamary, A. (2014). Measuring perceived mental workload in children. The American journal of psychology, 127(1), 107-125. https://pubmed.ncbi.nlm.nih.gov/24720100/
dc.relationLotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy, A., y Yger, F. (2018). A review of classification algorithms for EEG-based brain–computer interfaces: a 10 years update. Journal of neural engineering, 15(3), 031005. https://iopscience.iop.org/article/10.1088/1741-2552/aab2f2/meta
dc.relationLotte, F., Congedo, M., Lécuyer, A., Lamarche, F., y Arnaldi, B. (2007). A review of classification algorithms for EEG-based brain–computer interfaces. Journal of neural engineering, 4(2), R1. https://pubmed.ncbi.nlm.nih.gov/17409472/
dc.relationLotte, F., Larrue, F., y Mühl, C. (2013). Flaws in current human training protocols for spontaneous brain-computer interfaces: lessons learned from instructional design. Frontiers in human neuroscience, 7, 568. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3775130/
dc.relationMarchesotti, S., Bassolino, M., Serino, A., Bleuler, H., y Blanke, O. (2016). Quantifying the role of motor imagery in brain-machine interfaces. Scientific reports, 6(1), 1-12. https://www.nature.com/articles/srep24076
dc.relationMedina, B., Sierra, J. E., y Ulloa, A. B. (2018). Técnicas de extracción de características de señales EEG en la imaginación de movimiento para sistemas BCI. Revista ESPACIOS, 39(22). https://www.revistaespacios.com/a18v39n22/a18v39n22p36.pdf
dc.relationMillán, J. D. R., Rupp, R., Mueller-Putz, G., Murray-Smith, R., Giugliemma, C., Tangermann, M., ... y Mattia, D. (2010). Combining brain–computer interfaces and assistive technologies: state-of-the-art and challenges. Frontiers in neuroscience, 4, 161. https://www.frontiersin.org/articles/10.3389/fnins.2010.00161/full
dc.relationMonge Pereira, E., Pérez-Higueras, I. C., Fernández-González, P., Ibáñez-Pereda, J., Serrano, J. I., y Molina-Rueda, F. (2017). Entrenamiento de las señales corticales a través de un sistema BMI-EEG, evolución e intervención. A propósito de un caso. Revista de Neurología, 64(8), 362-366. https://www.frontiersin.org/articles/10.3389/fnins.2010.00161/full
dc.relationMuñoz, H., y Nureibis, C. (2014). Estudio de Técnicas de análisis y clasificación de senales EEG en el contexto de Sistemas BCI (Brain Computer Interface). Tesis de maestría, Universidad Autónoma de Madrid y la Escuela Politécnica Superior. https://repositorio.uam.es/handle/10486/660477
dc.relationNam, C. S., Nijholt, A., y Lotte, F. (Eds.). (2018). Brain–computer interfaces handbook: technological and theoretical advances. CRC Press).
dc.relationNam, C. S., Woo, J., y Bahn, S. (2012). Severe motor disability affects functional cortical integration in the context of brain–computer interface (BCI) use. Ergonomics, 55(5), 581- 591. https://pubmed.ncbi.nlm.nih.gov/22435802/
dc.relationNicolas Alonso, L. F., y Gomez Gil, J. (2012). Brain computer interfaces, a review. sensors, 12(2), 1211-1279. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3304110/
dc.relationNijboer, F., Plass-Oude Bos, D., Blokland, Y., van Wijk, R., y Farquhar, J. (2014). Design requirements and potential target users for brain-computer interfaces–recommendations from rehabilitation professionals. Brain-Computer Interfaces, 1(1), 50-61. https://www.researchgate.net/publication/262938937_Design_requirements_and_pote ntial_target_users_for_brain-computer_interfaces_- _recommendations_from_rehabilitation_professionals
dc.relationNovak, D., Sigrist, R., Gerig, N. J., Wyss, D., Bauer, R., Götz, U., y Riener, R. (2018). Benchmarking brain-computer interfaces outside the laboratory: the cybathlon 2016. Frontiers in neuroscience, 11, 756. https://www.frontiersin.org/articles/10.3389/fnins.2017.00756/full
dc.relationOrtner, R., Ram, D., Kollreider, A., Pitsch, H., Wojtowicz, J., y Edlinger, G. (2013, July). Humancomputer confluence for rehabilitation purposes after stroke. In International Conference on Virtual, Augmented and Mixed Reality (pp. 74-82). Springer, Berlin, Heidelberg. https://link.springer.com/chapter/10.1007/978-3-642-39420-1_9
dc.relationPfister, H., Kaynig, V., Botha, C. P., Bruckner, S., Dercksen, V. J., Hege, H. C., y Roerdink, J. B. (2014). Visualization in connectomics. In Scientific Visualization (pp. 221-245). Springer, London. https://arxiv.org/pdf/1206.1428.pdf
dc.relationPfurtscheller, G., y Neuper, C. (2001). Motor imagery and direct brain-computer communication. Proceedings of the IEEE, 89(7), 1123-1134. https://ieeexplore.ieee.org/document/939829
dc.relationPlasschaert, V. F., Vriezekolk, J. E., Aarts, P. B., Geurts, A. C., y Van den Ende, C. H. (2019). Interventions to improve upper limb function for children with bilateral cerebral palsy: a systematic review. Developmental Medicine & Child Neurology. https://pubmed.ncbi.nlm.nih.gov/30632139/
dc.relationPonce, P., Molina, A., Balderas, D. C., y Grammatikou, D. (2014). Brain computer interfaces for cerebral palsy. In Cerebral Palsy-Challenges for the Future. IntechOpen. https://www.intechopen.com/chapters/46001
dc.relationRamírez Diez, F. M. (2017). Uso de características espectrales y temporales para clasificación de tareas mentales en señales de electroencefalografía (Doctoral dissertation, Universidad Andrés Bello). https://repositorio.unab.cl/xmlui/handle/ria/4528
dc.relationRao, R. P., y Scherer, R. (2010). Statistical Pattern Recognition and Machine Learning in Brain– Computer Interfaces. In Statistical signal processing for neuroscience and neurotechnology (pp. 335-367). Academic Press. https://www.researchgate.net/publication/279946251_Statistical_Pattern_Recognition_and_Machine_Learning_in_Brain-Computer_Interfaces
dc.relationRebenitsch, L., y Owen, C. (2016). Review on cybersickness in applications and visual displays. Virtual Reality, 20(2), 101-125. https://link.springer.com/article/10.1007/S10055-016- 0285-9
dc.relationReyes Rueda, A. (2013). Interfaz cerebro computador mediante la clasificación de señales encefalográficas. Tesis de pregrado, Pontificia Universidad Javeriana. https://repository.javeriana.edu.co/handle/10554/13623
dc.relationRíos, Nathalie Jhoanna García; Moriones, Diana Marcela Sánchez; Hurtado, Olga Lucía Montoya. Estrategias de intervención de Fisioterapia en neurorehabilitación utilizadas en Colombia: Revisión Bibliográfica. Movimiento Científico, 2015, vol. 9, no 1, p. 60-66. https://revmovimientocientifico.ibero.edu.co/article/view/857
dc.relationRomo Vázquez, A., Romo Vázquez, R., y Velez Pérez, H. (2012). De la ingeniería biomédica al aula de matemáticas. ReCIBE. Revista electrónica de Computación, Informática, Biomédica y Electrónica, (1). https://www.redalyc.org/pdf/5122/512251559006.pdf
dc.relationSales Barros, E., y Neto, N. (2018, July). Classifcation Procedure for Motor Imagery EEG Data. In International Conference on Augmented Cognition (pp. 201-211). Springer, Cham. https://www.researchgate.net/publication/325530742_Classification_Procedure_for_Motor_Imagery_EEG_Data
dc.relationSerrano, J. I., del Castil o, M. D., Bayón, C., Ramírez, O., Lara, S. L., Martínez-Caballero, I., y Rocon, E. (2017). BCI-based facilitation of cortical activity associated to gait onset after single event multi-level surgery in cerebral palsy. In Brain-Computer Interface Research (pp. 99-110). Springer, Cham. https://link.springer.com/chapter/10.1007/978-3-319- 57132-4_8
dc.relationShierk, A., Lake, A., y Haas, T. (2016, February). Review of therapeutic interventions for the upper limb classified by manual ability in children with cerebral palsy. In Seminars in plastic surgery (Vol. 30, No. 01, pp. 014-023). Thieme Medical Publishers. https://pubmed.ncbi.nlm.nih.gov/26869859/
dc.relationSollfrank, T., Hart, D., Goodsell, R., Foster, J., y Tan, T. (2015). 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery. Frontiers in human Neuroscience, 9, 463. https://www.frontiersin.org/articles/10.3389/fnhum.2015.00463/full
dc.relationSun, H., Xiang, Y., Sun, Y., Zhu, H., y Zeng, J. (2010). On-line EEG classification for braincomputer interface based on CSP and SVM. In 2010 3rd International Congress on Image and Signal Processing (Vol. 9, pp. 4105-4108). IEEE. https://ieeexplore.ieee.org/document/5648081
dc.relationTakahashi, M., Takeda, K., Otaka, Y., Osu, R., Hanakawa, T., Gouko, M., y Ito, K. (2012). Event related desynchronization-modulated functional electrical stimulation system for stroke rehabilitation: a feasibility study. Journal of neuroengineering and rehabilitation, 9(1), 56. https://jneuroengrehab.biomedcentral.com/articles/10.1186/1743-0003-9-56
dc.relationTang, Z., Sun, S., Zhang, S., Chen, Y., Li, C., y Chen, S. (2016). A brain-machine interface based on ERD/ERS for an upper-limb exoskeleton control. Sensors, 16(12), 2050. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5191031/
dc.relationTemiyasathit, C. (2014). Increase performance of four-class classification for motor-imagery based brain-computer interface. In 2014 International Conference on Computer, Information and Telecommunication Systems (CITS) (pp. 1-5). IEEE. https://ieeexplore.ieee.org/document/6878959
dc.relationTudor, M., Tudor, L., y Tudor, K. I. (2005). Hans Berger (1873-1941) --the history of electroencephalography. Acta medica Croatica: casopis Hravatske akademije medicinskih znanosti, 59(4), 307-313. https://europepmc.org/article/med/16334737
dc.relationVan Erp, J., Lotte, F., y Tangermann, M. (2012). Brain-computer interfaces: beyond medical applications. Computer, 45(4), 26-34. https://ieeexplore.ieee.org/document/6165246
dc.relationViñas-Diz, S., y Sobrido-Prieto, M. (2016). Virtual reality for therapeutic purposes in stroke: A systematic review. Neurología (English Edition), 31(4), 255-277. https://www.sciencedirect.com/science/article/pii/S2173580816300062
dc.relationVourvopoulos, A., Pardo, O. M., Lefebvre, S., Neureither, M., Saldana, D., Jahng, E., y Liew, S. L. (2019). Effects of a brain-computer interface with virtual reality (VR) neurofeedback: A pilot study in chronic stroke patients. Frontiers in human neuroscience, 13, 210. https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-016-0173-2
dc.relationVoutilainen, A., Pitkäaho, T., Kvist, T., y Vehviläinen‐ Julkunen, K. (2016). How to ask about patient satisfaction? The visual analogue scale is less vulnerable to confounding factors and ceiling effect than a symmetric Likert scale. Journal of advanced nursing, 72(4), 946- 957. https://pubmed.ncbi.nlm.nih.gov/26689434/
dc.relationVuckovic, A., y Osuagwu, B. A. (2013). Using a motor imagery questionnaire to estimate the performance of a brain–computer interface based on object-oriented motor imagery. Clinical Neurophysiology, 124(8), 1586-1595. https://pubmed.ncbi.nlm.nih.gov/23535455/
dc.relationZickler, C., Riccio, A., Leotta, F., Hillian-Tress, S., Halder, S., Holz, E., y Kübler, A. (2011). A brain-computer interface as input channel for a standard assistive technology software. Clinical EEG and neuroscience, 42(4), 236-244. https://journals.sagepub.com/doi/10.1177/155005941104200409
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos reservados - Universidad Autónoma de Occidente, 2022
dc.subjectMaestría en Ingeniería de Desarrollo de Productos
dc.titleDiseño de una interfaz cerebro computador (BCI) para la interacción con un sistema de rehabilitación de miembro superior
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución