| dc.creator | Contreras Montoya, Leidy Tatiana | |
| dc.creator | Ilinca, Adrian | |
| dc.creator | Lain Beatove, Santiago | |
| dc.date.accessioned | 2023-05-03T20:41:38Z | |
| dc.date.accessioned | 2023-06-06T15:27:12Z | |
| dc.date.available | 2023-05-03T20:41:38Z | |
| dc.date.available | 2023-06-06T15:27:12Z | |
| dc.date.created | 2023-05-03T20:41:38Z | |
| dc.date.issued | 2022-02 | |
| dc.identifier | 19961073 | |
| dc.identifier | https://hdl.handle.net/10614/14694 | |
| dc.identifier | Universidad Autónoma de Occidente | |
| dc.identifier | Repositorio Educativo Digital UAO | |
| dc.identifier | https://red.uao.edu.co/ | |
| dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6649744 | |
| dc.description.abstract | The objective of this article is to review the methodologies used in the last 15 years to
estimate the power loss in wind turbines due to their exposure to adverse meteorological conditions.
Among the methods, the use of computational fluid dynamics (CFD) for the three-dimensional
numerical simulation of wind turbines is highlighted, as well as the use of two-dimensional CFD
simulation in conjunction with the blade element momentum theory (BEM). In addition, a brief
review of other methodologies such as image analysis, deep learning, and forecasting models is also
presented. This review constitutes a baseline for new investigations of the icing effects on wind
turbines’ power outputs. Furthermore, it contributes to a continuous improvement in power-loss
prediction and the better response of icing protection systems. | |
| dc.language | spa | |
| dc.publisher | MDPI | |
| dc.relation | 26 | |
| dc.relation | 1083 | |
| dc.relation | 1 | |
| dc.relation | 15 | |
| dc.relation | Contreras Montoya, L. T., Lain, S., Ilinca A. (2022). A Review on the Estimation of Power Loss Due to Icing in Wind Turbines. Energies, vol. 15 Núm. 1083, pp. 1-26 | |
| dc.relation | Energies | |
| dc.relation | IEA Wind TCP TASK. Task 19 Report 2020: Wind Energy in Cold Climates; VTT Technical Research Centre: Espoo, Finland, 2020 | |
| dc.relation | Pedersen, M.C.; Sørensen, H. Towards a CFD Model for Prediction of Wind Turbine Power Losses due to Icing in Cold Climate. In Proceedings of the 16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, HI, USA, 10–15 April 2016; p. 6 | |
| dc.relation | Makkonen, L.; Laakso, T.; Marjaniemi, M.; Finstad, K.J. Modelling and Prevention of Ice Accretion on Wind Turbines. Wind Eng. 2001, 25, 3–21. | |
| dc.relation | Fu, P.; Farzaneh, M. A CFD approach for modeling the rime-ice accretion process on a horizontal-axis wind turbine. J. Wind Eng. Ind. Aerodyn. 2010, 98, 181–188 | |
| dc.relation | Makkonen, L. Models for the growth of rime, glaze, icicles and wet snow on structures. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 2000, 358, 2913–2939 | |
| dc.relation | Virk, M.; Mughal, U.; Hu, Q.; Jiang, X. Multiphysics Based Numerical Study of Atmospheric Ice Accretion on a Full Scale Horizontal Axis Wind Turbine Blade. Int. J. Multiphysics 2016, 10, 237–246. [ | |
| dc.relation | Abbadi, M.; Mussa, I.; Lin, Y.; Wang, J. Preliminary Analysis of Ice Accretion Prediction on Wind Turbine Blades. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020 | |
| dc.relation | Pedersen, M.C.; Yin, C. Preliminary Modelling Study of Ice Accretion on Wind Turbines. Energy Procedia 2014, 61, 258–261. | |
| dc.relation | Makkonen, L.; Zhang, J.; Karlsson, T.; Tiihonen, M. Modelling the growth of large rime ice accretions. Cold Reg. Sci. Technol. 2018, 151, 133–137 | |
| dc.relation | Taborda Ceballos, M.A. Simulación Tridimensional Transitoria de Flujo Turbulento en Configuraciones de Interés Industrial. Master’s Thesis, Universidad Autónoma de Occidente, Cali, Colombia | |
| dc.relation | Villalpando, F.; Reggio, M.; Ilinca, A. Assessment of Turbulence Models for Flow Simulation around a Wind Turbine Airfoil. Model. Simul. Eng. 2011, 2011, 71414 | |
| dc.relation | Menter, F. Zonal Two Equation k-w Turbulence Models For Aerodynamic Flows. In Proceedings of the 23rd Fluid Dynamics Plasmadynamics, and Lasers Conference, Orlando, FL, USA, 6–9 July 1993. | |
| dc.relation | Sagol, E.; Reggio, M.; Ilinca, A. Assessment of Two-Equation Turbulence Models and Validation of the Performance Characteristics of an Experimental Wind Turbine by CFD. ISRN Mech. Eng. 2012, 2012, 428671 | |
| dc.relation | Virk, M.; Homola, M.; Nicklasson, P.J. Atmospheric icing on large wind turbine blades. Int. J. Energy Environ. 2012, 3, 1–8. | |
| dc.relation | van Wachem, B.G.M.; Almstedt, A.E. Methods for multiphase computational fluid dynamics. Chem. Eng. J. 2003, 96, 81–98. | |
| dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
| dc.rights | Derechos reservados - MDPI, 2022 | |
| dc.title | A Review on the Estimation of Power Loss Due to Icing in Wind Turbines | |
| dc.type | Artículo de revista | |