dc.creatorContreras Montoya, Leidy Tatiana
dc.creatorIlinca, Adrian
dc.creatorLain Beatove, Santiago
dc.date.accessioned2023-05-03T20:41:38Z
dc.date.accessioned2023-06-06T15:27:12Z
dc.date.available2023-05-03T20:41:38Z
dc.date.available2023-06-06T15:27:12Z
dc.date.created2023-05-03T20:41:38Z
dc.date.issued2022-02
dc.identifier19961073
dc.identifierhttps://hdl.handle.net/10614/14694
dc.identifierUniversidad Autónoma de Occidente
dc.identifierRepositorio Educativo Digital UAO
dc.identifierhttps://red.uao.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6649744
dc.description.abstractThe objective of this article is to review the methodologies used in the last 15 years to estimate the power loss in wind turbines due to their exposure to adverse meteorological conditions. Among the methods, the use of computational fluid dynamics (CFD) for the three-dimensional numerical simulation of wind turbines is highlighted, as well as the use of two-dimensional CFD simulation in conjunction with the blade element momentum theory (BEM). In addition, a brief review of other methodologies such as image analysis, deep learning, and forecasting models is also presented. This review constitutes a baseline for new investigations of the icing effects on wind turbines’ power outputs. Furthermore, it contributes to a continuous improvement in power-loss prediction and the better response of icing protection systems.
dc.languagespa
dc.publisherMDPI
dc.relation26
dc.relation1083
dc.relation1
dc.relation15
dc.relationContreras Montoya, L. T., Lain, S., Ilinca A. (2022). A Review on the Estimation of Power Loss Due to Icing in Wind Turbines. Energies, vol. 15 Núm. 1083, pp. 1-26
dc.relationEnergies
dc.relationIEA Wind TCP TASK. Task 19 Report 2020: Wind Energy in Cold Climates; VTT Technical Research Centre: Espoo, Finland, 2020
dc.relationPedersen, M.C.; Sørensen, H. Towards a CFD Model for Prediction of Wind Turbine Power Losses due to Icing in Cold Climate. In Proceedings of the 16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, HI, USA, 10–15 April 2016; p. 6
dc.relationMakkonen, L.; Laakso, T.; Marjaniemi, M.; Finstad, K.J. Modelling and Prevention of Ice Accretion on Wind Turbines. Wind Eng. 2001, 25, 3–21.
dc.relationFu, P.; Farzaneh, M. A CFD approach for modeling the rime-ice accretion process on a horizontal-axis wind turbine. J. Wind Eng. Ind. Aerodyn. 2010, 98, 181–188
dc.relationMakkonen, L. Models for the growth of rime, glaze, icicles and wet snow on structures. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 2000, 358, 2913–2939
dc.relationVirk, M.; Mughal, U.; Hu, Q.; Jiang, X. Multiphysics Based Numerical Study of Atmospheric Ice Accretion on a Full Scale Horizontal Axis Wind Turbine Blade. Int. J. Multiphysics 2016, 10, 237–246. [
dc.relationAbbadi, M.; Mussa, I.; Lin, Y.; Wang, J. Preliminary Analysis of Ice Accretion Prediction on Wind Turbine Blades. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020
dc.relationPedersen, M.C.; Yin, C. Preliminary Modelling Study of Ice Accretion on Wind Turbines. Energy Procedia 2014, 61, 258–261.
dc.relationMakkonen, L.; Zhang, J.; Karlsson, T.; Tiihonen, M. Modelling the growth of large rime ice accretions. Cold Reg. Sci. Technol. 2018, 151, 133–137
dc.relationTaborda Ceballos, M.A. Simulación Tridimensional Transitoria de Flujo Turbulento en Configuraciones de Interés Industrial. Master’s Thesis, Universidad Autónoma de Occidente, Cali, Colombia
dc.relationVillalpando, F.; Reggio, M.; Ilinca, A. Assessment of Turbulence Models for Flow Simulation around a Wind Turbine Airfoil. Model. Simul. Eng. 2011, 2011, 71414
dc.relationMenter, F. Zonal Two Equation k-w Turbulence Models For Aerodynamic Flows. In Proceedings of the 23rd Fluid Dynamics Plasmadynamics, and Lasers Conference, Orlando, FL, USA, 6–9 July 1993.
dc.relationSagol, E.; Reggio, M.; Ilinca, A. Assessment of Two-Equation Turbulence Models and Validation of the Performance Characteristics of an Experimental Wind Turbine by CFD. ISRN Mech. Eng. 2012, 2012, 428671
dc.relationVirk, M.; Homola, M.; Nicklasson, P.J. Atmospheric icing on large wind turbine blades. Int. J. Energy Environ. 2012, 3, 1–8.
dc.relationvan Wachem, B.G.M.; Almstedt, A.E. Methods for multiphase computational fluid dynamics. Chem. Eng. J. 2003, 96, 81–98.
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos reservados - MDPI, 2022
dc.titleA Review on the Estimation of Power Loss Due to Icing in Wind Turbines
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución