dc.creatorZuluaga, Jorge
dc.creatorMurillo Sánchez, Carlos E.
dc.creatorMoreno Chuquen, Ricardo
dc.creatorChamorro, Harold R.
dc.creatorSood, Vijay K.
dc.date.accessioned2023-05-16T19:50:24Z
dc.date.accessioned2023-06-06T15:26:41Z
dc.date.available2023-05-16T19:50:24Z
dc.date.available2023-06-06T15:26:41Z
dc.date.created2023-05-16T19:50:24Z
dc.date.issued2022
dc.identifier17521424
dc.identifierhttps://hdl.handle.net/10614/14748
dc.identifier25168401
dc.identifierUniversidad Autónoma de Occidente
dc.identifierRepositorio Educativo Digital UAO
dc.identifierhttps://red.uao.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6649739
dc.description.abstractThe variability and uncertainty of renewable resources impose new challenges in the operational planning related to the unit commitment of generation units. The development of day‐ahead multi‐period optimal power flow, under integration of wind power, requires modelling of multiple scenarios in order to ensure an optimal power flow minimising the generation cost. A progressive hedging approach has been proposed and developed to solve efficiently the unit commitment problem as a two‐stage stochastic programming problem to update each stage in parallel. The performance of progressive hedging is compared with a standard mixed‐integer linear programming problem. The results indicate that the computation time is 50 times faster than standard mixed‐integer linear program ming. The test case system is based on a reduced version of the interconnected Colombian system. The comparative results indicate an important reduction in computational time
dc.languageeng
dc.publisherInstitution of Engineering and Technology (IET)
dc.publisherTianjin University
dc.relation9
dc.relation1
dc.relationZuluaga, J., Murillo Sánchez, C.E., Moreno Chuquen, R., Chamorro, H.R., Sood, V.K. (2022). Day-ahead unit commitment for hydro-thermal coordination with high participation of wind power. IET Renewable Power Generation, pp. 1-9
dc.relationIET Energy Systems Integration
dc.relationMeraz, P., et al.: Renewable Energy and Economic Dispatch Integration Within the Honduras Electricity Market, pp. 1–34 (2021). [Online]. http://link.springer.com/chapter/10.1007/978-981-33-6753-1
dc.relationWood, A.J., Wollenberg, B.F., Sheblé, G.B.: Power Generation, Opera tion, and Control, 3rd ed. John Wiley & Sons Ltd. (2014)
dc.relationPadhy, N.P.: Unit commitment—a bibliographical survey. IEEE Trans. Power Syst. 19(2), 1196–1205 (2004). https://doi.org/10.1109/tpwrs. 2003.821611
dc.relationPapavasiliou, A.: Coupling renewable energy supply with deferrable de mand. ProQuest Dissertations and Theses 3499039, 100 (20
dc.relationMurillo‐Sánchez, C.E., et al.: Secure planning and operations of systems with stochastic sources, energy storage, and active demand. IEEE Trans. Smart Grid 4(4), 2220–2229 (2013). https://doi.org/10.1109/tsg.2013. 2281001
dc.relationLowery, C., O'Malley, M.: Reserves in stochastic unit commitment: an Irish system case study. IEEE Trans. Sustain. Energy 6(3), 1029–1038 (2015). https://doi.org/10.1109/tste.2014.2364520
dc.relationCondren, J., Gedra, T.W.: Expected‐security‐cost optimal power flow with small‐signal stability constraints. IEEE Trans. Power Syst. 21(4), 1736–1743 (2006). https://doi.org/10.1109/tpwrs.2006.882453
dc.relationCondren, J., Gedra, T.W., Damrongkulkamjorn, P.: Optimal power flow with expected security costs. IEEE Trans. Power Syst. 21(2), 541–547 (2006). https://doi.org/10.1109/tpwrs.2006.873114
dc.relationMorales, J.M., et al.: Pricing electricity in pools with wind producers. IEEE Trans. Power Syst. 27(3), 1366–1376 (2012). https://doi.org/10. 1109/tpwrs.2011.2182622
dc.relationAlqunun, K., et al.: Stochastic unit commitment problem, incorporating wind power and an energy storage system. Sustainability 12(23), 10100 (2020). https://doi.org/10.3390/su122310100
dc.relationZhao, N., You, F.: Unit commitment under uncertainty using data‐driven optimization with clustering techniques. Chem. Eng. Trans. 88, 1195–1200 (2021)
dc.relationGollmer, R., et al.: Unit commitment in power generation – a basic model and some extensions. Ann. Oper. Res. 96(1/4), 167–189 (2000). https://doi.org/10.1023/a:1018947401538
dc.relationRockafellar, R., Wets, R.J.‐B.: Scenarios and policy aggregation in opti mization under uncertainty. Math. Oper. Res. 16(1), 119–147 (1991). https://doi.org/10.1287/moor.16.1.119
dc.relationHaugen, K.K., Løkketangen, A., Woodruff, D.L.: Progressive hedging as a meta‐heuristic applied to stochastic lot‐sizing. Eur. J. Oper. Res. 132(1), 116–122 (2001). https://doi.org/10.1016/s0377-2217(00)00116-8
dc.relationMulvey, J.M., Vladimirou, H.: Applying the progressive hedging algo rithm to stochastic generalized networks. Oper. Res. 31(1), 399–424 (1991). https://doi.org/10.1007/bf02204860
dc.relationZimmerman, R.D., Murillo‐Sánchez, C.E.: Matpower (version 7.1). (2020)[Online]. https://matpower.org
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos reservados - Institution of Engineering and Technology (IET), 2022
dc.titleDay-ahead unit commitment for hydro-thermal coordination with high participation of wind power
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución