dc.contributorIEEE
dc.creatorRomero Beltrán, César Augusto
dc.creatorMurillo Riascos, Yan Carlos
dc.creatorGonzález Vargas, Andrés Mauricio
dc.creatorCabrera López, John Jairo
dc.date.accessioned2023-05-29T15:16:46Z
dc.date.accessioned2023-06-06T15:22:53Z
dc.date.available2023-05-29T15:16:46Z
dc.date.available2023-06-06T15:22:53Z
dc.date.created2023-05-29T15:16:46Z
dc.date.issued2022-07
dc.identifierhttps://hdl.handle.net/10614/14803
dc.identifierUniversidad Autónoma de Occidente
dc.identifierRepositorio Educativo Digital UAO
dc.identifierhttps://red.uao.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6649718
dc.description.abstractCardiovascular System Diseases (CVD) are among the most common causes of death and illness in the world. Arterial pressures is a good indicator of CVD existence. However, measuring arterial pressure commonly involves either invasive techniques that require catheter insertion, or noninvasive oscillometric techniques that require inflating a cuff around the arm and don’t provide continuous information. Recently, new methods are being develop to provide continuous, reliable and comfortable measuring of arterial pressure. One promising technique involves using Electrical Impedance (EI) in a highly vascularized segment of the body (such as an arm) to estimate the arterial pressure in that segment. In this paper, we present an experimental setup which includes a gelatin model that emulates some physical and electrical properties of the forearm, an automated system to control pressure and measure EI in such model, and a computational method that makes use of regression algorithms in order to predict the pressure value based on the EI magnitude and phase values
dc.languageeng
dc.publisherIEEE
dc.publisherCali
dc.relationRomero Beltrán, C.A., Murillo Riascos, Y.C., González Vargas, A.M., Cabrera López, J.J. (julio 27-29, 2022). Machine learning estimation of an arterial pressure model using electrical impedance. 2022 IEEE Colombian Conference on Applications of Computational Intelligence (ColCACI), pp. 1-6
dc.relation27-29 julio 2022
dc.relationCali
dc.relation2022 IEEE Colombian Conference on Applications of computational Intelligence
dc.relation"Technical package for cardiovascular disease management in primary health care", Report, pp. 73, 2016.
dc.relationJ. Schneider, M. Schroth, M. Holzhey, T. Blocher and W. Stork, "An approach to improve impedance plethysmography on the wrist by using adaptive feedback control", 2017 IEEE Sensors Applications Symposium (SAS), pp. 1-6, 2017
dc.relationM. Metshein, P. Annus, R. Land, M. Min and A. Aabloo, "Availability and variations of cardiac activity in the case of measuring the bioimpedance of wrist", 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1-5, 2018.
dc.relationH. Ji Jer, H. Yang Min and C. Ming Wen, "Using bioimpedance plethysmography for measuring the pulse wave velocity of peripheral vascular", 2016 13th International Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology (ECTI-CON), pp. 1-5, Jun. 2016
dc.relationE. Piuzzi et al., "Impedance plethysmography system with inertial measurement units for motion artefact reduction: Application to continuous breath activity monitoring", 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings, pp. 386-390, May 2015
dc.relationP. U. P. K. Ram, N. PM. R. K. V. J. Joseph and M. Sivaprakasam, "Blood Pressure Estimation using Arterial Diameter: Exploring Different Machine Learning Methods", 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 1-6, Jun. 2020
dc.relationM. Kachuee, M. M. Kiani, H. Mohammadzade and M. Shabany, "Cuff- less high-accuracy calibration-free blood pressure estimation using pulse transit time", 2015 IEEE International Symposium on Circuits and Systems (ISCAS), vol. 2015, no. 2, pp. 1006-1009, May 2015
dc.relationJ. J. Cabrera Lopez and J. Velasco Medina, "Structured Approach and Impedance Spectroscopy Microsystem for Fractional-Order Electrical Characterization of Vegetable Tissues", IEEE Trans. Instrum. Meas, vol. 69, no. 2, pp. 469-478, Feb. 2020.
dc.relationØ. G. Grimnes and Sverre Martinsen, Bioimpedance and Bioelectricity Basics, 2015.
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos reservados - IEEE, 2022
dc.source10.1109/ColCACI56938.2022.9905315
dc.titleMachine learning estimation of an arterial pressure model using electrical impedance
dc.typeDocumento de Conferencia


Este ítem pertenece a la siguiente institución