dc.creatorTamayo Monsalve, Manuel Alejandro
dc.creatorMercado Ruiz, Esteban
dc.creatorVilla Pulgarin, Juan Pablo
dc.creatorBravo Ortíz, Mario Alejandro
dc.creatorArteaga Arteaga, Harold Brayan
dc.creatorMora Rubio, Alejandro
dc.creatorAlzate Grisales, Jesús Alejandro
dc.creatorArias Garzón, Daniel
dc.creatorRomero Cano, Víctor
dc.creatorOrozco Arias., Simón
dc.creatorOsorio, Gustavo
dc.creatorTabares Soto, Reinel
dc.date.accessioned2023-05-11T18:51:22Z
dc.date.accessioned2023-06-06T15:10:39Z
dc.date.available2023-05-11T18:51:22Z
dc.date.available2023-06-06T15:10:39Z
dc.date.created2023-05-11T18:51:22Z
dc.date.issued2022-04
dc.identifier21693536
dc.identifierhttps://hdl.handle.net/10614/14730
dc.identifierUniversidad Autónoma de Occidente
dc.identifierRepositorio Educativo Digital UAO
dc.identifierhttps://red.uao.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6649648
dc.description.abstractThis work presents a framework for coffee maturity classification from multispectral image data based on Convolutional Neural Networks (CNNs). The system leverages the use of multispectral image acquisition systems that generate large amounts of data, by taking advantage of the ability of CNNs to extract meaningful patterns from very high-dimensional data. We validated the use of five different popular CNN architectures on the classification of cherry coffee fruits according to their ripening stage. The different models were trained on a training dataset balanced in different ways, which resulted in a top accuracy higher than 98% when applied to the classification of 600 coffee fruits in 5 different stages of ripening. This work has the potential of providing the farmer with a high-quality, optimized, accurate and viable method for classifying coffee fruits. In order to foster future research in this area, the data used in this work, which was acquired with a custom-developed multispectral image acquisition system, have been released
dc.languageeng
dc.publisherIEEE
dc.relation42982
dc.relation42971
dc.relation10
dc.relationTamayo Monsalve, M. A., Mercado Ruiz, E., Villa Pulgarin, J. P., Bravo Ortíz., M. A., Arteaga, H. B. Arteaga. A. Mora Rubio. Alzate Grisales, J. A., Arias Garzon., D. Romero Cano, V., Orozco Arias, S., Osorio, G., Tabares Soto, R. (2022). Coffee Maturity Classification Using Convolutional Neural Networks and Transfer Learning. IEEE Access, vol. 10pp. 42971-42982
dc.relationIEEE Access
dc.relationG. Gyarmati and T. Mizik, ‘‘The present and future of the precision agri- culture,’’ in Proc. IEEE 15th Int. Conf. Syst. Syst. Eng. (SoSE), Jun. 2020, pp. 593–596
dc.relationS. Cubero, N. Aleixos, E. Moltó, J. Gómez-Sanchis, and J. Blasco, ‘‘Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables,’’ Food Bioprocess Technol., vol. 4, no. 4, pp. 487–504, May 2011.
dc.relationY. A. Ohali, ‘‘Computer vision based date fruit grading system: Design and implementation,’’ J. King Saud Univ., Comput. Inf. Sci., vol. 23, no. 1, pp. 29–36, Jan. 2011
dc.relationD. Wu and D.-W. Sun, ‘‘Advanced applications of hyperspectral imag- ing technology for food quality and safety analysis and assessment: A review—Part I: Fundamentals,’’ Innov. Food Sci. Emerg. Technol., vol. 19, pp. 1–14, Jul. 2013.
dc.relationL. B. Furstenau, M. K. Sott, L. M. Kipper, E. L. Machado, J. R. Lopez-Robles, M. S. Dohan, M. J. Cobo, A. Zahid, Q. H. Abbasi, and M. A. Imran, ‘‘Link between sustainability and industry 4.0: Trends, challenges and new perspectives,’’ IEEE Access, vol. 8, pp. 140079–140096, 2020.
dc.relationS. Munera, C. Besada, J. Blasco, S. Cubero, A. Salvador, P. Talens, and N. Aleixos, ‘‘Astringency assessment of persimmon by hyperspectral imaging,’’ Postharvest Biol. Technol., vol. 125, pp. 35–41, Mar. 2017.
dc.relationM. Taghizadeh, A. A. Gowen, and C. P. O’Donnell, ‘‘Comparison of hyperspectral imaging with conventional RGB imaging for quality eval- uation of Agaricus bisporus mushrooms,’’ Biosyst. Eng., vol. 108, no. 2, pp. 191–194, Feb. 2011
dc.relationS. Ponte, ‘‘Estándares, comercio y equidad: Lecciones de la industria de los cafés especiales,’’ Economía Mundial del café, Centro de Investigaciones Para el Desarrollo de Copenhague, Anaheim, CF, Tech. Rep. 5 de mayo de, 2002, pp. 131–163
dc.relationM. Sott, L. Furstenau, L. Kipper, F. Giraldo, J. Lpez-Robles, M. Cobo, A. Zahid, Q. Abbasi, and M. Imran, ‘‘Precision techniques and agri- culture 4.0 technologies to promote sustainability in the coffee sector: State of the art, challenges and future trends,’’ IEEE Access, vol. 8, pp. 149854–149867, 2020.
dc.relationA. G. Costa, D. A. G. D. Sousa, J. L. Paes, J. P. B. Cunha, and M. V. M. D. Oliveira, ‘‘Classification of robusta coffee fruits at different maturation stages using colorimetric characteristics,’’ Engenharia Agrí- cola, vol. 40, no. 4, pp. 518–525, Aug. 2020
dc.relationL. Cavigelli, D. Bernath, M. Magno, and L. Benini, ‘‘Computationally efficient target classification in multispectral image data with deep neural networks,’’ CoRR, vol. 10, 2016
dc.relationA. H. Shahin, A. Kamal, and M. A. Elattar, ‘‘Deep ensemble learning for skin lesion classification from dermoscopic images,’’ in Proc. 9th Cairo Int. Biomed. Eng. Conf. (CIBEC), Dec. 2018, pp. 150–153
dc.relationJ. P. Rodríguez, D. C. Corrales, J.-N. Aubertot, and J. C. Corrales, ‘‘A com- puter vision system for automatic cherry beans detection on coffee trees,’’ Pattern Recognit. Lett., vol. 136, pp. 142–153, Aug. 2020.
dc.relationZ. Huo, G. Du, F. Luo, Y. Qiao, and J. Luo, ‘‘D-MSCD: Mean-standard deviation curve descriptor based on deep learning,’’ IEEE Access, vol. 8, pp. 204509–204517, 2020
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos reservados - IEEE, 2022
dc.titleCoffee maturity classification using convolutional neural networks and transfer learning
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución