dc.creator | Tamayo Monsalve, Manuel Alejandro | |
dc.creator | Mercado Ruiz, Esteban | |
dc.creator | Villa Pulgarin, Juan Pablo | |
dc.creator | Bravo Ortíz, Mario Alejandro | |
dc.creator | Arteaga Arteaga, Harold Brayan | |
dc.creator | Mora Rubio, Alejandro | |
dc.creator | Alzate Grisales, Jesús Alejandro | |
dc.creator | Arias Garzón, Daniel | |
dc.creator | Romero Cano, Víctor | |
dc.creator | Orozco Arias., Simón | |
dc.creator | Osorio, Gustavo | |
dc.creator | Tabares Soto, Reinel | |
dc.date.accessioned | 2023-05-11T18:51:22Z | |
dc.date.accessioned | 2023-06-06T15:10:39Z | |
dc.date.available | 2023-05-11T18:51:22Z | |
dc.date.available | 2023-06-06T15:10:39Z | |
dc.date.created | 2023-05-11T18:51:22Z | |
dc.date.issued | 2022-04 | |
dc.identifier | 21693536 | |
dc.identifier | https://hdl.handle.net/10614/14730 | |
dc.identifier | Universidad Autónoma de Occidente | |
dc.identifier | Repositorio Educativo Digital UAO | |
dc.identifier | https://red.uao.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6649648 | |
dc.description.abstract | This work presents a framework for coffee maturity classification from multispectral image
data based on Convolutional Neural Networks (CNNs). The system leverages the use of multispectral image
acquisition systems that generate large amounts of data, by taking advantage of the ability of CNNs to extract
meaningful patterns from very high-dimensional data. We validated the use of five different popular CNN
architectures on the classification of cherry coffee fruits according to their ripening stage. The different
models were trained on a training dataset balanced in different ways, which resulted in a top accuracy higher
than 98% when applied to the classification of 600 coffee fruits in 5 different stages of ripening. This work
has the potential of providing the farmer with a high-quality, optimized, accurate and viable method for
classifying coffee fruits. In order to foster future research in this area, the data used in this work, which was
acquired with a custom-developed multispectral image acquisition system, have been released | |
dc.language | eng | |
dc.publisher | IEEE | |
dc.relation | 42982 | |
dc.relation | 42971 | |
dc.relation | 10 | |
dc.relation | Tamayo Monsalve, M. A., Mercado Ruiz, E., Villa Pulgarin, J. P., Bravo Ortíz., M. A., Arteaga, H. B. Arteaga. A. Mora Rubio. Alzate Grisales, J. A., Arias Garzon., D. Romero Cano, V., Orozco Arias, S., Osorio, G., Tabares Soto, R. (2022). Coffee Maturity Classification Using Convolutional Neural Networks and Transfer Learning. IEEE Access, vol. 10pp. 42971-42982 | |
dc.relation | IEEE Access | |
dc.relation | G. Gyarmati and T. Mizik, ‘‘The present and future of the precision agri- culture,’’ in Proc. IEEE 15th Int. Conf. Syst. Syst. Eng. (SoSE), Jun. 2020, pp. 593–596 | |
dc.relation | S. Cubero, N. Aleixos, E. Moltó, J. Gómez-Sanchis, and J. Blasco, ‘‘Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables,’’ Food Bioprocess Technol., vol. 4, no. 4, pp. 487–504, May 2011. | |
dc.relation | Y. A. Ohali, ‘‘Computer vision based date fruit grading system: Design and implementation,’’ J. King Saud Univ., Comput. Inf. Sci., vol. 23, no. 1, pp. 29–36, Jan. 2011 | |
dc.relation | D. Wu and D.-W. Sun, ‘‘Advanced applications of hyperspectral imag- ing technology for food quality and safety analysis and assessment: A review—Part I: Fundamentals,’’ Innov. Food Sci. Emerg. Technol., vol. 19, pp. 1–14, Jul. 2013. | |
dc.relation | L. B. Furstenau, M. K. Sott, L. M. Kipper, E. L. Machado, J. R. Lopez-Robles, M. S. Dohan, M. J. Cobo, A. Zahid, Q. H. Abbasi, and M. A. Imran, ‘‘Link between sustainability and industry 4.0: Trends, challenges and new perspectives,’’ IEEE Access, vol. 8, pp. 140079–140096, 2020. | |
dc.relation | S. Munera, C. Besada, J. Blasco, S. Cubero, A. Salvador, P. Talens, and N. Aleixos, ‘‘Astringency assessment of persimmon by hyperspectral imaging,’’ Postharvest Biol. Technol., vol. 125, pp. 35–41, Mar. 2017. | |
dc.relation | M. Taghizadeh, A. A. Gowen, and C. P. O’Donnell, ‘‘Comparison of hyperspectral imaging with conventional RGB imaging for quality eval- uation of Agaricus bisporus mushrooms,’’ Biosyst. Eng., vol. 108, no. 2, pp. 191–194, Feb. 2011 | |
dc.relation | S. Ponte, ‘‘Estándares, comercio y equidad: Lecciones de la industria de los cafés especiales,’’ Economía Mundial del café, Centro de Investigaciones Para el Desarrollo de Copenhague, Anaheim, CF, Tech. Rep. 5 de mayo de, 2002, pp. 131–163 | |
dc.relation | M. Sott, L. Furstenau, L. Kipper, F. Giraldo, J. Lpez-Robles, M. Cobo, A. Zahid, Q. Abbasi, and M. Imran, ‘‘Precision techniques and agri- culture 4.0 technologies to promote sustainability in the coffee sector: State of the art, challenges and future trends,’’ IEEE Access, vol. 8, pp. 149854–149867, 2020. | |
dc.relation | A. G. Costa, D. A. G. D. Sousa, J. L. Paes, J. P. B. Cunha, and M. V. M. D. Oliveira, ‘‘Classification of robusta coffee fruits at different maturation stages using colorimetric characteristics,’’ Engenharia Agrí- cola, vol. 40, no. 4, pp. 518–525, Aug. 2020 | |
dc.relation | L. Cavigelli, D. Bernath, M. Magno, and L. Benini, ‘‘Computationally efficient target classification in multispectral image data with deep neural networks,’’ CoRR, vol. 10, 2016 | |
dc.relation | A. H. Shahin, A. Kamal, and M. A. Elattar, ‘‘Deep ensemble learning for skin lesion classification from dermoscopic images,’’ in Proc. 9th Cairo Int. Biomed. Eng. Conf. (CIBEC), Dec. 2018, pp. 150–153 | |
dc.relation | J. P. Rodríguez, D. C. Corrales, J.-N. Aubertot, and J. C. Corrales, ‘‘A com- puter vision system for automatic cherry beans detection on coffee trees,’’ Pattern Recognit. Lett., vol. 136, pp. 142–153, Aug. 2020. | |
dc.relation | Z. Huo, G. Du, F. Luo, Y. Qiao, and J. Luo, ‘‘D-MSCD: Mean-standard deviation curve descriptor based on deep learning,’’ IEEE Access, vol. 8, pp. 204509–204517, 2020 | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | Derechos reservados - IEEE, 2022 | |
dc.title | Coffee maturity classification using convolutional neural networks and transfer learning | |
dc.type | Artículo de revista | |