dc.contributorPulgarín Giraldo, Juan Diego
dc.creatorVallejo Padilla, Richard Hernán
dc.date.accessioned2022-11-09T17:07:09Z
dc.date.accessioned2023-06-06T15:09:55Z
dc.date.available2022-11-09T17:07:09Z
dc.date.available2023-06-06T15:09:55Z
dc.date.created2022-11-09T17:07:09Z
dc.date.issued2022-10-28
dc.identifierhttps://hdl.handle.net/10614/14401
dc.identifierUniversidad Autónoma de Occidente
dc.identifierRepositorio Educativo Digital
dc.identifierhttps://red.uao.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6649630
dc.description.abstractLos algoritmos de Machine Learning (ML) han impulsado aplicaciones en distintas áreas de investigación. En este trabajo, se evalúa modelos de ML para estimación del tiempo de evolución del Accidente cerebrovascular isquémico (ACVi) mediante caracterización radiómica de imágenes de Tomografía Computarizada (TC) y características clínicas. Estos registros se encuentran almacenados en el Sistema de Información Radiológica del departamento de Radiología de la Fundación Valle de Lili, y son adecuados para construir una base de datos con 2819 muestras obtenidas de los registros de 74 pacientes. La recolección de imágenes e información clínica del paciente se realizó de forma manual. Se organizaron características clínicas; de la evaluación realizada al paciente y radiómicas; extraidas de las imágenes de TC en un conjunto de datos. Se implementaron técnicas de clasificación para la estimación entre dos clases: clase 1; tiempo trascurrido desde el inicio del ACVi menor o igual a 4,5 horas y clase 2; mayor a 4,5 horas. El mejor clasificador fue Gradient Boosting con exactitud de 99,1%, precisión de 100%, sensibilidad de 98,3%, especificidad de 100%, puntaje F1 de 99,1% e índice kappa de 98,3%. Finalmente, se implementaron técnicas de regresión que buscan estimar el tiempo transcurrido en un rango definido por cada una de las clases. El mejor regresor para la clase 1 fue Bosque aleatorio con MAE de 5,735 y RMSE de 18,855, mientras que, para la clase 2, fue Árbol de decisión con MAE de 9,905 y RMSE de 90,961.
dc.description.abstractMachine learning (ML) algorithms have driven applications in different research areas. In this work, ML models are evaluated to estimate the time of evolution of a stroke through radiomic characterization of computerized tomography (CT) images and clinical characteristics. These records are stored in the Radiological Information System of the Radiology Department of the Fundación Valle de Lili, and are suitable for building a database with 2,819 samples obtained from the records of 74 patients. The collection of images and clinical information of the patient was carried out manually. Characteristics clinical; of the evaluation carried out on the patient and radiomics; extracted from the CT images were organized in a data set. Classification techniques were implemented for the estimation between two classes: class 1, the time elapsed since the start of the ACVi less than or equal to 4.5 hours, and class 2, greater than 4.5 hours. The best classifier was Gradient Boosting with an accuracy of 99.1%, precision of 100%, sensitivity of 98.3%, specificity of 100%, F1 score of 99.1%, and kappa index of 98.3%. Finally, regression techniques were implemented to estimate the time elapsed in a range defined by each class. The best regressor for class 1 was Random Forest with MAE of 5,735 and RMSE of 18,855, while for class 2, it was Decision Tree with MAE of 9,905 and RMSE of 90,961.
dc.languagespa
dc.publisherUniversidad Autónoma de Occidente
dc.publisherIngeniería Biomédica
dc.publisherDepartamento de Automática y Electrónica
dc.publisherFacultad de Ingeniería
dc.publisherCali
dc.relationVallejo Padilla, R. H. (2022). Estimación de tiempo de evolución de enfermedad cerebrovascular isquémica en paciente mediante aprendizaje automático en el Departamento de Radiología de la Fundación Valle de Lili. (Pasantía institucional). Universidad Autónoma de Occidente. Cali. Colombia. https://red.uao.edu.co/handle/10614/14401
dc.relationAlonso de Leciñana, M. (2007). Fisiopatología de la isquemia cerebral. Guia Neurológica, 8, 5-17.
dc.relationBeneyto, M. J. (2021). Partes del encéfalo. Enfermeria.top. https://bit.ly/3PDmPGt
dc.relationBiggs, D., Silverman, M. E., Chen, F., Walsh, B., y Wynne, P. (2019). How should we treat patients who wake up with a stroke? A review of recent advances in management of acute ischemic stroke. American Journal of Emergency Medicine, 37(5), 954-959. https://doi.org/10.1016/j.ajem.2019.02.010
dc.relationBlanchette, J. (2016). Stepwards Posterior Cerebral Artery (PCA). Stepwards. https://www.stepwards.com/?page_id=5819
dc.relationBock, T. (2018). What are Variance Inflation Factors (VIFs)? Displayr Blog. https://www.displayr.com/variance-inflation-factors-vifs/
dc.relationBroocks, G., Leischner, H., Hanning, U., Flottmann, F., Faizy, T. D., Schön, G., Sporns, P., Thomalla, G., Kamalian, S., Lev, M. H., Fiehler, J., y Kemmling, A. (2020). Lesion Age Imaging in Acute Stroke: Water Uptake in CT Versus DWIFLAIR Mismatch. Annals of Neurology, 88(6), 1144-1152. https://doi.org/10.1002/ana.25903
dc.relationBrownlee, J. (2020). Feature Selection in Python with Scikit - Learn. Machine Learning Mastery. https://machinelearningmastery.com/feature-selection-inpython-with-scikit-learn/
dc.relationBrownlee, J. (2021). Regression Metrics for Machine Learning. Machine Learning Mastery. https://machinelearningmastery.com/regression-metrics-for-machinelearning/
dc.relationCalzado, A., y Geleijns, J. (2010). Tomografía computarizada. Evolución, principios técnicos y aplicaciones. Fisica medica, 11(3), 163-180.
dc.relationCaro, L., y Patiño, G. (2018). Neuroanatomía Fundamentos de neuroanatomía estructural, funcional y clínica (E. Osuna Suarez (ed.); 1.a ed.). Universidad Nacional de Colombia.
dc.relationCastillo, J. (2001). Luces y sombras de la neuroprotección en la isquemia cerebral. Neuro-Psiquiatria, 64, 354-381.
dc.relationChawla, N. V., Bowyer, K. W., Hall, L. O., y Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321-357. https://doi.org/10.1613/jair.953
dc.relationChong, J. Y. (2019). Generalidades sobre los accidentes cerebrovasculares. Manual MSD Versión para profesionales. https://msdmnls.co/3SRkE3R
dc.relationChong, J. Y. (2020). Accidente Cerebrovascular Isquémico. Manual MSD. https://doi.org/10.7775/rac.v84.i2.8331
dc.relationDiaz, O., Kushibar, K., Osuala, R., Linardos, A., Garrucho, L., Igual, L., Radeva, P., Prior, F., Gkontra, P., y Lekadir, K. (2021). Data preparation for artificial intelligence in medical imaging: A comprehensive guide to open-access platforms and tools. Physica Medica, 83(March), 25-37. https://doi.org/10.1016/j.ejmp.2021.02.007
dc.relationDourado, C. M. J. M., da Silva, S. P. P., da Nóbrega, R. V. M., Antonio, A. C., Filho, P. P. R., y de Albuquerque, V. H. C. (2019). Deep learning IoT system for online stroke detection in skull computed tomography images. Computer Networks, 152, 25-39. https://doi.org/10.1016/j.comnet.2019.01.019
dc.relationDwivedi, R. (2020). What is Imblearn Technique - Everything To Know For Class Imbalance Issues In Machine Learning. Analyticsindiamag. https://analyticsindiamag.com/what-is-imblearn-technique-everything-to-knowfor-class-imbalance-issues-in-machine-learning/
dc.relationFernández, A. (2021). Tutorial Sklearn Python. https://anderfernandez.com/blog/tutorial-sklearn-machine-learning-python/
dc.relationGarcía Alfonso, C., Martínez Reyes, A. E., García, V., Ricaurte Fajardo, A., Torres, I., y Coral Casas, J. (2019). Actualización en diagnóstico y tratamiento del ataque cerebrovascular isquémico agudo. Universitas Médica, 60(3), 1-17. https://doi.org/10.11144/javeriana.umed60-3.actu
dc.relationGarcía, F. A. (2007). Anatomía y función. Universidad de Murcia. https://webs.um.es/fags/neurociencias_at/doc/6_neuropsicologia.pdf
dc.relationGéron, A. (2019). Hands on machine learning with Scikit-Learn, Keras and TensorFlow: concepts, tools, and techniques to build intelligent systems. En R. Roumeliotis y N. Tache (Eds.), O’Reilly Media (1.a ed.). O’Reilly Media.
dc.relationGiacalone, M., Rasti, P., Debs, N., Frindel, C., Cho, T. H., Grenier, E., y Rousseau, D. (2018). Local spatio-temporal encoding of raw perfusion MRI for the prediction of final lesion in stroke. Medical Image Analysis, 50, 117-126. https://doi.org/10.1016/j.media.2018.08.008
dc.relationGupta, Pramod, y Sehgal, N. K. (2021). Introduction to Machine Learning in the Cloud with Python. En Springer (1.a ed.). Springer Nature Switzerland. https://doi.org/10.1007/978-3-030-71270-9
dc.relationGupta, Punita. (2020). KNN-K Nearest Neighbors Algorithm. https://www.linkedin.com/pulse/knn-k-nearest-neighbors-algorithm-punitagupta/
dc.relationHilbert, A., Ramos, L. A., van Os, H. J. A., Olabarriaga, S. D., Tolhuisen, M. L., Wermer, M. J. H., Barros, R. S., van der Schaaf, I., Dippel, D., Roos, Y. B. W. E. M., van Zwam, W. H., Yoo, A. J., Emmer, B. J., Lycklama à Nijeholt, G. J., Zwinderman, A. H., Strijkers, G. J., Majoie, C. B. L. M., y Marquering, H. A. (2019). Data-efficient deep learning of radiological image data for outcome prediction after endovascular treatment of patients with acute ischemic stroke. Computers in Biology and Medicine, 115(October), 1-7. https://doi.org/10.1016/j.compbiomed.2019.103516
dc.relationHo, K. C., Speier, W., Zhang, H., Scalzo, F., El-Saden, S., y Arnold, C. W. (2019). A Machine Learning Approach for Classifying Ischemic Stroke Onset Time from Imaging. IEEE Transactions on Medical Imaging, 38(7), 1666-1676. https://doi.org/10.1109/TMI.2019.2901445
dc.relationKarthik, R., Gupta, U., Jha, A., Rajalakshmi, R., y Menaka, R. (2019). A deep supervised approach for ischemic lesion segmentation from multimodal MRI using Fully Convolutional Network. Applied Soft Computing Journal, 84. https://doi.org/10.1016/j.asoc.2019.105685
dc.relationKorstanje, J. (2021). SMOTE: a powerful solution for imbalaced data. TowardsDataScience. https://towardsdatascience.com/smote-fdce2f605729
dc.relationKumar, V., Gu, Y., Basu, S., Berglund, A., Eschrich, S. A., Schabath, M. B., Forster, K., Aerts, H. J. W. L., Dekker, A., Goldgof, D. B., Hall, L. O., Lambin, P., Gatenby, R. A., y Gillies, R. J. (2013). QIN “Radiomics: The Process and the Challenges”. 30(9), 1234-1248. https://doi.org/10.1016/j.mri.2012.06.010.QIN
dc.relationLee, H., Lee, E. J., Ham, S., Lee, H. Bin, Lee, J. S., Kwon, S. U., Kim, J. S., Kim, N., y Kang, D. W. (2020). Machine learning approach to identify stroke within 4.5 hours. Stroke, Ml, 860-866. https://doi.org/10.1161/STROKEAHA.119.027611
dc.relationLin, M. P., y Liebeskind, D. S. (2016). Imaging of Ischemic Stroke. CONTINUUM Lifelong Learning in Neurology, 22(5), 1399-1423. https://doi.org/10.1212/CON.0000000000000376
dc.relationMackey, J., Kleindorfer, D., Sucharew, H., Moomaw, C. J., Kissela, B. M., Alwell, K., Flaherty, M. L., Woo, D., Khatri, P., Adeoye, O., Ferioli, S., Khoury, J. C., Hornung, R., y Broderick, J. P. (2011). Population-based study of wake-up strokes. Neurology, 76(19), 1662-1667. https://doi.org/10.1212/WNL.0b013e318219fb30
dc.relationMarín, D. M. (2019). Metodología para el apoyo al diagnóstico de cáncer a partir de imágenes de resonancia magnética multiparamétrica, integrando características radiómicas y modelos de aprendizaje profundo. Instituto Tecnológico Metropolitano. Marrero, E. G. M. (2018). Médula Espinal. Manual de prácticas de Neuroanatomía 2da edición. Laboratorio de morfología, 15-24. https://doi.org/10.2307/j.ctv513d5c.6
dc.relationMaulud, D., y Abdulazeez, A. M. (2020). A Review on Linear Regression Comprehensive in Machine Learning. Journal of Applied Science and Technology Trends, 1(4), 140-147. https://doi.org/10.38094/jastt1457
dc.relationMenardi, G., y Torelli, N. (2014). Training and assessing classification rules with imbalanced data. Data Mining and Knowledge Discovery, 28(1), 92-122. https://doi.org/10.1007/s10618-012-0295-5
dc.relationMerck y Co. (2021). Arterias del encéfalo. Manual MSD. https://www.msdmanuals.com/es-co/professional/multimedia/figure/arteriasdel-encéfalo
dc.relationMinisterio de Salud. (2015). Carga de enfermedad por enfermedades crónicas no transmisibles y discapacidad en Colombia. Observatorio Nacional de Salud, 1- 212. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/IA/INS/infor me-ons-5.pdf
dc.relationMoll Manzur, C., Gutierrez Corvalan, I., y Santos Carquin, I. (2018). Código ACV para servicios de Urgencia. 1, 1-31.
dc.relationMoulton, E., Valabregue, R., Lehéricy, S., Samson, Y., y Rosso, C. (2019). Multivariate prediction of functional outcome using lesion topography characterized by acute diffusion tensor imaging. NeuroImage: Clinical, 23(April), 101821. https://doi.org/10.1016/j.nicl.2019.101821
dc.relationMuñoz Collazos, M., Gutiérrez, Á. M., Londoño, D., Bayona, H., Herrán, S., y Pérez, G. E. (2008). Uso del activador de plasminógeno tisular recombinante (rt-PA) en el ataque cerebrovascular isquémico (ACVi) en Colombia: un estudio de costo-efectividad. Acta neurol. colomb, 158-173.
dc.relationMurray, C. J. L., y Lopez, A. D. (2013). Measuring the Global Burden of Disease. New England Journal of Medicine, 369(5), 448-457. https://doi.org/10.1056/nejmra1201534
dc.relationNair, A. (2021). Combine Your Machine Learning Models With Voting | Towards Data Science. Towards Data Science. https://n9.cl/abxy8
dc.relationPeixoto, S. A., y Rebouças Filho, P. P. (2018). Neurologist-level classification of stroke using a Structural Co-Occurrence Matrix based on the frequency domain. Computers and Electrical Engineering, 71(August), 398-407. https://doi.org/10.1016/j.compeleceng.2018.07.051
dc.relationPérez, F. (2014). Project Jupyter. https://jupyter.org/about Powers, W. J., Rabinstein, A. A., Ackerson, T., Adeoye, O. M., Bambakidis, N. C., Becker, K., Biller, J., Brown, M., Demaerschalk, B. M., Hoh, B., Jauch, E. C., Kidwell, C. S., Leslie-Mazwi, T. M., Ovbiagele, B., Scott, P. A., Sheth, K. N., Southerland, A. M., Summers, D. V., y Tirschwell, D. L. (2019). Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke. En Stroke (Vol. 50, Número 12). https://doi.org/10.1161/STR.0000000000000211
dc.relationPython Software Foundation. (2022). Welcome to Python.org. https://www.python.org/ Reyes, A. (2013). Ataque Cerebrovascular Isquémico, Etiología y Características Clínicas [Universidad del Azuay]. http://dspace.uazuay.edu.ec/bitstream/datos/2775/1/09844.pdf
dc.relationRibeiro, M. T., Singh, S., y Guestrin, C. (2016). «Why Should I Trust You?» Explaining the Predictions of Any Classifier. NAACL-HLT 2016 - 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Demonstrations Session, 97-101. https://doi.org/10.18653/v1/n16-3020
dc.relationRubio, N., y Miranda, J. A. (2013). Diagnóstico precoz de las enfermedades cerebrovasculares isquémicas. MEDISAN, 17(11), 8091-8105.
dc.relationSacco, R. L., Kasner, S. E., Broderick, J. P., Caplan, L. R., Connors, J. J., Culebras, A., Elkind, M. S. V., George, M. G., Hamdan, A. D., Higashida, R. T., Hoh, B. L., Janis, L. S., Kase, C. S., Kleindorfer, D. O., Lee, J. M., Moseley, M. E., Peterson, E. D., Turan, T. N., Valderrama, A. L., y Vinters, H. V. (2013). An updated definition of stroke for the 21st century: A statement for healthcare professionals from the American heart association/American stroke association. Stroke, 44(7), 2064-2089. https://doi.org/10.1161/STR.0b013e318296aeca
dc.relationSánchez, A. (2020). Manual Python. Aprendeconalf. https://aprendeconalf.es/docencia/python/manual/
dc.relationSethi, A. (2020). Support Vector Regression Tutorial for Machine Learning. Analytics Vidhya, 1-5. https://www.analyticsvidhya.com/blog/2020/03/support-vector-regression-tutorial-for-machine-learning/
dc.relationShafaat, O., Bernstock, J. D., Shafaat, A., Yedavalli, V. S., Elsayed, G., Gupta, S., Sotoudeh, E., Sair, H. I., Yousem, D. M., y Sotoudeh, H. (2021). Leveraging artificial intelligence in ischemic stroke imaging. Journal of Neuroradiology, xxxx. https://doi.org/10.1016/j.neurad.2021.05.001
dc.relationShang, W., Huang, H., Zhu, H., Lin, Y., Wang, Z., y Qu, Y. (2005). An improved kNN algorithm - Fuzzy kNN. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3801 LNAI, 741-746. https://doi.org/10.1007/11596448_109
dc.relationSirsat, M. S., Fermé, E., y Câmara, J. (2020). Machine Learning for Brain Stroke: A Review. Journal of Stroke and Cerebrovascular Diseases, 29(10). https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105162
dc.relationSistema de Información Territorial en Accidente Cerebrovascular (SITAC). (2018). ACV en la población Colombiana. Stroke- Medicine, 0(0), 1-7. https://sitac.uniandes.academy/
dc.relationSistema General de Seguridad Social en Salud. (2015). Guía de práctica clínica para el diagnóstico, tratamiento y rehabilitación del episodio agudo del Ataque Cerebrovascular lsquémico en población mayor de 18 años. En Ministerio de Salud y Protección Social – Colciencias (Vol. 54). https://doi.org/10.1016/S0300-8932(09)73132-X
dc.relationSmith, D. (2008). Brain arterial vascular territories. Radiopaedia.org. https://radiopaedia.org/articles/1085
dc.relationSmithuis, R. (2008). Vascular Territories. Radiology department of the Alrijne Hospital in Leiderdorp, the Netherlands. https://doi.org/10.1007/978-3-642- 54404-0_8
dc.relationSnell, R. (2010). Neuroanatomía clínica (M. C. Pont Sunyer (ed.); 7.a ed.). Lippincott Williams y Wilkins.
dc.relationSosa, M. (2016). How to create an NRRD file from a DICOM Medical Imaging Data Set. 3D Printing in Medicine. https://www.embodi3d.com/blogs/entry/341-howto-create-an-nrrd-file-from-a-dicom-medical-imaging-data-set/
dc.relationSoutherland, A. M. (2017). Clinical Evaluation of the Patient with Acute Stroke. CONTINUUM Lifelong Learning in Neurology, 23(1), 40-61. https://doi.org/10.1212/CON.0000000000000437
dc.relationSperandei, S. (2014). Understanding logistic regression analysis. Biochemia Medica, 24(1), 12-18. https://doi.org/10.11613/BM.2014.003
dc.relationSwaminathan, S. (2018). Logistic Regression — Detailed Overview | by Saishruthi Swaminathan | Towards Data Science. TowardsDataScience. https://towardsdatascience.com/logistic-regression-detailed-overview46c4da4303bc
dc.relationTrinidad Sabalete, M., Gil, A. M., Palenzuela Navarro, C., Gomez, I., Romero Rodriguez, R., y Lopez Benot, S. (2015). Evaluación de técnicas de neuroimagen (RM / TC) en el ictus agudo. Tecnicas de neuroimagen Ictus, 1, 1-93.
dc.relationVan Griethuyse, J., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., GH Beets-Tan, R., Fillion Robin, J. C., Pieper, S., y Aerts, H. (2017). Computational Radiomics System to Decode the Radiographic Phenotype. Physiology and behavior, 176(10), 139-148. https://doi.org/10.1158/0008-5472.CAN-17- 0339.Computational
dc.relationVan Timmeren, J. E., Cester, D., Tanadini-Lang, S., Alkadhi, H., y Baessler, B. (2020). Radiomics in medical imaging—“how-to” guide and critical reflection. Insights into Imaging, 11(1). https://doi.org/10.1186/s13244-020-00887-2
dc.relationVilela, P., y Rowley, H. A. (2017). Brain ischemia: CT and MRI techniques in acute ischemic stroke. European Journal of Radiology, 96(August), 162-172. https://doi.org/10.1016/j.ejrad.2017.08.014
dc.relationVilla, L. (2004). Ataque Cerebrovascular. Asociacion Colombiana de neurologia, 7, 33. http://www.acnweb.org/guia/g3cap7.pdf
dc.relationVivas, H. (2014). Optimización en el entrenamiento del Perceptrón Multicapa. Universidad del Cauca. Wesner, J. (2016). MAE and RMSE, Which Metric is Better? Medium. https://medium.com/human-in-a-machine-world/mae-and-rmse-which-metricis-better-e60ac3bde13d
dc.relationWintermark, M., Sanelli, P. C., Albers, G. W., Bello, J. A., Derdeyn, C. P., Hetts, S. W., Johnson, M. H., Kidwell, C. S., Lev, M. H., Liebeskind, D. S., Rowley, H. A., Schaefer, P. W., Sunshine, J. L., Zaharchuk, G., y Meltzer, C. C. (2013). Imaging recommendations for acute stroke and transient ischemic attack patients: A joint statement by the American Society of Neuroradiology, the American College of Radiology and the Society of NeuroInterventional Surgery. Journal of the American College of Radiology, 10(11), 828-832. https://doi.org/10.1016/j.jacr.2013.06.019
dc.relationWirth, R., y Hipp, J. (2000). CRISP-DM: towars a standard process model for data mining. 29-39. https://www.researchgate.net/publication/239585378_CRISPDM_Towards_a_standard_process_model_for_data_mining
dc.relationYalçın, O. G., y Istanbul, T. (2021). Applied Neural Networks with TensorFlow 2: API Oriented Deep Learning with Python. En A. Black, J. Markham, y J. Valkili (Eds.), Springer Science+Business (1.a ed.). Apress Media LLC. https://doi.org/10.1 07/978-1-4842-6513-0
dc.relationZelada, C. (2017). Evaluación de modelos de clasificación Introducción. Rpubs. https://rpubs.com/chzelada/275494
dc.relationZhang, Z. (2016). Naïve bayes classification in R. Annals of Translational Medicine, 4(12), 1-5. https://doi.org/10.21037/atm.2016.03.38
dc.relationZhu, H., Jiang, L., Zhang, H., Luo, L., Chen, Y., y Chen, Y. (2021). An automatic machine learning approach for ischemic stroke onset time identification based on DWI and FLAIR imaging. NeuroImage: Clinical, 31, 102744. https://doi.org/10.1016/j.nicl.2021.102744
dc.relationZhu, W., Zeng, N., y Wang, N. (2010). Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS® implementations. Northeast SAS Users Group 2010: Health Care and Life Sciences, 1-9.
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos reservados - Universidad Autónoma de Occidente, 2022
dc.subjectIngeniería Biomédica
dc.titleEstimación de tiempo de evolución de enfermedad cerebrovascular isquémica en paciente mediante aprendizaje automático en el Departamento de Radiología de la Fundación Valle de Lili
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución