dc.contributor | Pulgarín Giraldo, Juan Diego | |
dc.creator | Vallejo Padilla, Richard Hernán | |
dc.date.accessioned | 2022-11-09T17:07:09Z | |
dc.date.accessioned | 2023-06-06T15:09:55Z | |
dc.date.available | 2022-11-09T17:07:09Z | |
dc.date.available | 2023-06-06T15:09:55Z | |
dc.date.created | 2022-11-09T17:07:09Z | |
dc.date.issued | 2022-10-28 | |
dc.identifier | https://hdl.handle.net/10614/14401 | |
dc.identifier | Universidad Autónoma de Occidente | |
dc.identifier | Repositorio Educativo Digital | |
dc.identifier | https://red.uao.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6649630 | |
dc.description.abstract | Los algoritmos de Machine Learning (ML) han impulsado aplicaciones en distintas áreas de investigación. En este trabajo, se evalúa modelos de ML para estimación del tiempo de evolución del Accidente cerebrovascular isquémico (ACVi) mediante caracterización radiómica de imágenes de Tomografía Computarizada (TC) y características clínicas. Estos registros se encuentran almacenados en el Sistema de Información Radiológica del departamento de Radiología de la Fundación Valle de Lili, y son adecuados para construir una base de datos con 2819 muestras obtenidas de los registros de 74 pacientes.
La recolección de imágenes e información clínica del paciente se realizó de forma manual. Se organizaron características clínicas; de la evaluación realizada al paciente y radiómicas; extraidas de las imágenes de TC en un conjunto de datos. Se implementaron técnicas de clasificación para la estimación entre dos clases: clase 1; tiempo trascurrido desde el inicio del ACVi menor o igual a 4,5 horas y clase 2; mayor a 4,5 horas. El mejor clasificador fue Gradient Boosting con exactitud de 99,1%, precisión de 100%, sensibilidad de 98,3%, especificidad de 100%, puntaje F1 de 99,1% e índice kappa de 98,3%. Finalmente, se implementaron técnicas de regresión que buscan estimar el tiempo transcurrido en un rango definido por cada una de las clases. El mejor regresor para la clase 1 fue Bosque aleatorio con MAE de 5,735 y RMSE de 18,855, mientras que, para la clase 2, fue Árbol de decisión con MAE de 9,905 y RMSE de 90,961. | |
dc.description.abstract | Machine learning (ML) algorithms have driven applications in different research areas. In this work, ML models are evaluated to estimate the time of evolution of a stroke through radiomic characterization of computerized tomography (CT) images and clinical characteristics. These records are stored in the Radiological Information System of the Radiology Department of the Fundación Valle de Lili, and are suitable for building a database with 2,819 samples obtained from the records of 74 patients.
The collection of images and clinical information of the patient was carried out manually. Characteristics clinical; of the evaluation carried out on the patient and radiomics; extracted from the CT images were organized in a data set. Classification techniques were implemented for the estimation between two classes: class 1, the time elapsed since the start of the ACVi less than or equal to 4.5 hours, and class 2, greater than 4.5 hours. The best classifier was Gradient Boosting with an accuracy of 99.1%, precision of 100%, sensitivity of 98.3%, specificity of 100%, F1 score of 99.1%, and kappa index of 98.3%. Finally, regression techniques were implemented to estimate the time elapsed in a range defined by each class. The best regressor for class 1 was Random Forest with MAE of 5,735 and RMSE of 18,855, while for class 2, it was Decision Tree with MAE of 9,905 and RMSE of 90,961. | |
dc.language | spa | |
dc.publisher | Universidad Autónoma de Occidente | |
dc.publisher | Ingeniería Biomédica | |
dc.publisher | Departamento de Automática y Electrónica | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Cali | |
dc.relation | Vallejo Padilla, R. H. (2022). Estimación de tiempo de evolución de enfermedad cerebrovascular isquémica en paciente mediante aprendizaje automático en el Departamento de Radiología de la Fundación Valle de Lili. (Pasantía institucional). Universidad Autónoma de Occidente. Cali. Colombia. https://red.uao.edu.co/handle/10614/14401 | |
dc.relation | Alonso de Leciñana, M. (2007). Fisiopatología de la isquemia cerebral. Guia Neurológica, 8, 5-17. | |
dc.relation | Beneyto, M. J. (2021). Partes del encéfalo. Enfermeria.top. https://bit.ly/3PDmPGt | |
dc.relation | Biggs, D., Silverman, M. E., Chen, F., Walsh, B., y Wynne, P. (2019). How should we treat patients who wake up with a stroke? A review of recent advances in management of acute ischemic stroke. American Journal of Emergency Medicine, 37(5), 954-959. https://doi.org/10.1016/j.ajem.2019.02.010 | |
dc.relation | Blanchette, J. (2016). Stepwards Posterior Cerebral Artery (PCA). Stepwards. https://www.stepwards.com/?page_id=5819 | |
dc.relation | Bock, T. (2018). What are Variance Inflation Factors (VIFs)? Displayr Blog. https://www.displayr.com/variance-inflation-factors-vifs/ | |
dc.relation | Broocks, G., Leischner, H., Hanning, U., Flottmann, F., Faizy, T. D., Schön, G., Sporns, P., Thomalla, G., Kamalian, S., Lev, M. H., Fiehler, J., y Kemmling, A. (2020). Lesion Age Imaging in Acute Stroke: Water Uptake in CT Versus DWIFLAIR Mismatch. Annals of Neurology, 88(6), 1144-1152. https://doi.org/10.1002/ana.25903 | |
dc.relation | Brownlee, J. (2020). Feature Selection in Python with Scikit - Learn. Machine Learning Mastery. https://machinelearningmastery.com/feature-selection-inpython-with-scikit-learn/ | |
dc.relation | Brownlee, J. (2021). Regression Metrics for Machine Learning. Machine Learning Mastery. https://machinelearningmastery.com/regression-metrics-for-machinelearning/ | |
dc.relation | Calzado, A., y Geleijns, J. (2010). Tomografía computarizada. Evolución, principios técnicos y aplicaciones. Fisica medica, 11(3), 163-180. | |
dc.relation | Caro, L., y Patiño, G. (2018). Neuroanatomía Fundamentos de neuroanatomía estructural, funcional y clínica (E. Osuna Suarez (ed.); 1.a ed.). Universidad Nacional de Colombia. | |
dc.relation | Castillo, J. (2001). Luces y sombras de la neuroprotección en la isquemia cerebral. Neuro-Psiquiatria, 64, 354-381. | |
dc.relation | Chawla, N. V., Bowyer, K. W., Hall, L. O., y Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321-357. https://doi.org/10.1613/jair.953 | |
dc.relation | Chong, J. Y. (2019). Generalidades sobre los accidentes cerebrovasculares. Manual MSD Versión para profesionales. https://msdmnls.co/3SRkE3R | |
dc.relation | Chong, J. Y. (2020). Accidente Cerebrovascular Isquémico. Manual MSD. https://doi.org/10.7775/rac.v84.i2.8331 | |
dc.relation | Diaz, O., Kushibar, K., Osuala, R., Linardos, A., Garrucho, L., Igual, L., Radeva, P., Prior, F., Gkontra, P., y Lekadir, K. (2021). Data preparation for artificial intelligence in medical imaging: A comprehensive guide to open-access platforms and tools. Physica Medica, 83(March), 25-37. https://doi.org/10.1016/j.ejmp.2021.02.007 | |
dc.relation | Dourado, C. M. J. M., da Silva, S. P. P., da Nóbrega, R. V. M., Antonio, A. C., Filho, P. P. R., y de Albuquerque, V. H. C. (2019). Deep learning IoT system for online stroke detection in skull computed tomography images. Computer Networks, 152, 25-39. https://doi.org/10.1016/j.comnet.2019.01.019 | |
dc.relation | Dwivedi, R. (2020). What is Imblearn Technique - Everything To Know For Class Imbalance Issues In Machine Learning. Analyticsindiamag. https://analyticsindiamag.com/what-is-imblearn-technique-everything-to-knowfor-class-imbalance-issues-in-machine-learning/ | |
dc.relation | Fernández, A. (2021). Tutorial Sklearn Python. https://anderfernandez.com/blog/tutorial-sklearn-machine-learning-python/ | |
dc.relation | García Alfonso, C., Martínez Reyes, A. E., García, V., Ricaurte Fajardo, A., Torres, I., y Coral Casas, J. (2019). Actualización en diagnóstico y tratamiento del ataque cerebrovascular isquémico agudo. Universitas Médica, 60(3), 1-17. https://doi.org/10.11144/javeriana.umed60-3.actu | |
dc.relation | García, F. A. (2007). Anatomía y función. Universidad de Murcia. https://webs.um.es/fags/neurociencias_at/doc/6_neuropsicologia.pdf | |
dc.relation | Géron, A. (2019). Hands on machine learning with Scikit-Learn, Keras and TensorFlow: concepts, tools, and techniques to build intelligent systems. En R. Roumeliotis y N. Tache (Eds.), O’Reilly Media (1.a ed.). O’Reilly Media. | |
dc.relation | Giacalone, M., Rasti, P., Debs, N., Frindel, C., Cho, T. H., Grenier, E., y Rousseau, D. (2018). Local spatio-temporal encoding of raw perfusion MRI for the prediction of final lesion in stroke. Medical Image Analysis, 50, 117-126. https://doi.org/10.1016/j.media.2018.08.008 | |
dc.relation | Gupta, Pramod, y Sehgal, N. K. (2021). Introduction to Machine Learning in the Cloud with Python. En Springer (1.a ed.). Springer Nature Switzerland. https://doi.org/10.1007/978-3-030-71270-9 | |
dc.relation | Gupta, Punita. (2020). KNN-K Nearest Neighbors Algorithm. https://www.linkedin.com/pulse/knn-k-nearest-neighbors-algorithm-punitagupta/ | |
dc.relation | Hilbert, A., Ramos, L. A., van Os, H. J. A., Olabarriaga, S. D., Tolhuisen, M. L., Wermer, M. J. H., Barros, R. S., van der Schaaf, I., Dippel, D., Roos, Y. B. W. E. M., van Zwam, W. H., Yoo, A. J., Emmer, B. J., Lycklama à Nijeholt, G. J., Zwinderman, A. H., Strijkers, G. J., Majoie, C. B. L. M., y Marquering, H. A. (2019). Data-efficient deep learning of radiological image data for outcome prediction after endovascular treatment of patients with acute ischemic stroke. Computers in Biology and Medicine, 115(October), 1-7. https://doi.org/10.1016/j.compbiomed.2019.103516 | |
dc.relation | Ho, K. C., Speier, W., Zhang, H., Scalzo, F., El-Saden, S., y Arnold, C. W. (2019). A Machine Learning Approach for Classifying Ischemic Stroke Onset Time from Imaging. IEEE Transactions on Medical Imaging, 38(7), 1666-1676. https://doi.org/10.1109/TMI.2019.2901445 | |
dc.relation | Karthik, R., Gupta, U., Jha, A., Rajalakshmi, R., y Menaka, R. (2019). A deep supervised approach for ischemic lesion segmentation from multimodal MRI using Fully Convolutional Network. Applied Soft Computing Journal, 84. https://doi.org/10.1016/j.asoc.2019.105685 | |
dc.relation | Korstanje, J. (2021). SMOTE: a powerful solution for imbalaced data. TowardsDataScience. https://towardsdatascience.com/smote-fdce2f605729 | |
dc.relation | Kumar, V., Gu, Y., Basu, S., Berglund, A., Eschrich, S. A., Schabath, M. B., Forster, K., Aerts, H. J. W. L., Dekker, A., Goldgof, D. B., Hall, L. O., Lambin, P., Gatenby, R. A., y Gillies, R. J. (2013). QIN “Radiomics: The Process and the Challenges”. 30(9), 1234-1248. https://doi.org/10.1016/j.mri.2012.06.010.QIN | |
dc.relation | Lee, H., Lee, E. J., Ham, S., Lee, H. Bin, Lee, J. S., Kwon, S. U., Kim, J. S., Kim, N., y Kang, D. W. (2020). Machine learning approach to identify stroke within 4.5 hours. Stroke, Ml, 860-866. https://doi.org/10.1161/STROKEAHA.119.027611 | |
dc.relation | Lin, M. P., y Liebeskind, D. S. (2016). Imaging of Ischemic Stroke. CONTINUUM Lifelong Learning in Neurology, 22(5), 1399-1423. https://doi.org/10.1212/CON.0000000000000376 | |
dc.relation | Mackey, J., Kleindorfer, D., Sucharew, H., Moomaw, C. J., Kissela, B. M., Alwell, K., Flaherty, M. L., Woo, D., Khatri, P., Adeoye, O., Ferioli, S., Khoury, J. C., Hornung, R., y Broderick, J. P. (2011). Population-based study of wake-up strokes. Neurology, 76(19), 1662-1667. https://doi.org/10.1212/WNL.0b013e318219fb30 | |
dc.relation | Marín, D. M. (2019). Metodología para el apoyo al diagnóstico de cáncer a partir de imágenes de resonancia magnética multiparamétrica, integrando características radiómicas y modelos de aprendizaje profundo. Instituto Tecnológico Metropolitano. Marrero, E. G. M. (2018). Médula Espinal. Manual de prácticas de Neuroanatomía 2da edición. Laboratorio de morfología, 15-24. https://doi.org/10.2307/j.ctv513d5c.6 | |
dc.relation | Maulud, D., y Abdulazeez, A. M. (2020). A Review on Linear Regression Comprehensive in Machine Learning. Journal of Applied Science and Technology Trends, 1(4), 140-147. https://doi.org/10.38094/jastt1457 | |
dc.relation | Menardi, G., y Torelli, N. (2014). Training and assessing classification rules with imbalanced data. Data Mining and Knowledge Discovery, 28(1), 92-122. https://doi.org/10.1007/s10618-012-0295-5 | |
dc.relation | Merck y Co. (2021). Arterias del encéfalo. Manual MSD. https://www.msdmanuals.com/es-co/professional/multimedia/figure/arteriasdel-encéfalo | |
dc.relation | Ministerio de Salud. (2015). Carga de enfermedad por enfermedades crónicas no transmisibles y discapacidad en Colombia. Observatorio Nacional de Salud, 1- 212. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/IA/INS/infor me-ons-5.pdf | |
dc.relation | Moll Manzur, C., Gutierrez Corvalan, I., y Santos Carquin, I. (2018). Código ACV para servicios de Urgencia. 1, 1-31. | |
dc.relation | Moulton, E., Valabregue, R., Lehéricy, S., Samson, Y., y Rosso, C. (2019). Multivariate prediction of functional outcome using lesion topography characterized by acute diffusion tensor imaging. NeuroImage: Clinical, 23(April), 101821. https://doi.org/10.1016/j.nicl.2019.101821 | |
dc.relation | Muñoz Collazos, M., Gutiérrez, Á. M., Londoño, D., Bayona, H., Herrán, S., y Pérez, G. E. (2008). Uso del activador de plasminógeno tisular recombinante (rt-PA) en el ataque cerebrovascular isquémico (ACVi) en Colombia: un estudio de costo-efectividad. Acta neurol. colomb, 158-173. | |
dc.relation | Murray, C. J. L., y Lopez, A. D. (2013). Measuring the Global Burden of Disease. New England Journal of Medicine, 369(5), 448-457. https://doi.org/10.1056/nejmra1201534 | |
dc.relation | Nair, A. (2021). Combine Your Machine Learning Models With Voting | Towards Data Science. Towards Data Science. https://n9.cl/abxy8 | |
dc.relation | Peixoto, S. A., y Rebouças Filho, P. P. (2018). Neurologist-level classification of stroke using a Structural Co-Occurrence Matrix based on the frequency domain. Computers and Electrical Engineering, 71(August), 398-407. https://doi.org/10.1016/j.compeleceng.2018.07.051 | |
dc.relation | Pérez, F. (2014). Project Jupyter. https://jupyter.org/about Powers, W. J., Rabinstein, A. A., Ackerson, T., Adeoye, O. M., Bambakidis, N. C., Becker, K., Biller, J., Brown, M., Demaerschalk, B. M., Hoh, B., Jauch, E. C., Kidwell, C. S., Leslie-Mazwi, T. M., Ovbiagele, B., Scott, P. A., Sheth, K. N., Southerland, A. M., Summers, D. V., y Tirschwell, D. L. (2019). Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke. En Stroke (Vol. 50, Número 12). https://doi.org/10.1161/STR.0000000000000211 | |
dc.relation | Python Software Foundation. (2022). Welcome to Python.org. https://www.python.org/ Reyes, A. (2013). Ataque Cerebrovascular Isquémico, Etiología y Características Clínicas [Universidad del Azuay]. http://dspace.uazuay.edu.ec/bitstream/datos/2775/1/09844.pdf | |
dc.relation | Ribeiro, M. T., Singh, S., y Guestrin, C. (2016). «Why Should I Trust You?» Explaining the Predictions of Any Classifier. NAACL-HLT 2016 - 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Demonstrations Session, 97-101. https://doi.org/10.18653/v1/n16-3020 | |
dc.relation | Rubio, N., y Miranda, J. A. (2013). Diagnóstico precoz de las enfermedades cerebrovasculares isquémicas. MEDISAN, 17(11), 8091-8105. | |
dc.relation | Sacco, R. L., Kasner, S. E., Broderick, J. P., Caplan, L. R., Connors, J. J., Culebras, A., Elkind, M. S. V., George, M. G., Hamdan, A. D., Higashida, R. T., Hoh, B. L., Janis, L. S., Kase, C. S., Kleindorfer, D. O., Lee, J. M., Moseley, M. E., Peterson, E. D., Turan, T. N., Valderrama, A. L., y Vinters, H. V. (2013). An updated definition of stroke for the 21st century: A statement for healthcare professionals from the American heart association/American stroke association. Stroke, 44(7), 2064-2089. https://doi.org/10.1161/STR.0b013e318296aeca | |
dc.relation | Sánchez, A. (2020). Manual Python. Aprendeconalf. https://aprendeconalf.es/docencia/python/manual/ | |
dc.relation | Sethi, A. (2020). Support Vector Regression Tutorial for Machine Learning. Analytics Vidhya, 1-5. https://www.analyticsvidhya.com/blog/2020/03/support-vector-regression-tutorial-for-machine-learning/ | |
dc.relation | Shafaat, O., Bernstock, J. D., Shafaat, A., Yedavalli, V. S., Elsayed, G., Gupta, S., Sotoudeh, E., Sair, H. I., Yousem, D. M., y Sotoudeh, H. (2021). Leveraging artificial intelligence in ischemic stroke imaging. Journal of Neuroradiology, xxxx. https://doi.org/10.1016/j.neurad.2021.05.001 | |
dc.relation | Shang, W., Huang, H., Zhu, H., Lin, Y., Wang, Z., y Qu, Y. (2005). An improved kNN algorithm - Fuzzy kNN. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3801 LNAI, 741-746. https://doi.org/10.1007/11596448_109 | |
dc.relation | Sirsat, M. S., Fermé, E., y Câmara, J. (2020). Machine Learning for Brain Stroke: A Review. Journal of Stroke and Cerebrovascular Diseases, 29(10). https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105162 | |
dc.relation | Sistema de Información Territorial en Accidente Cerebrovascular (SITAC). (2018). ACV en la población Colombiana. Stroke- Medicine, 0(0), 1-7. https://sitac.uniandes.academy/ | |
dc.relation | Sistema General de Seguridad Social en Salud. (2015). Guía de práctica clínica para el diagnóstico, tratamiento y rehabilitación del episodio agudo del Ataque Cerebrovascular lsquémico en población mayor de 18 años. En Ministerio de Salud y Protección Social – Colciencias (Vol. 54). https://doi.org/10.1016/S0300-8932(09)73132-X | |
dc.relation | Smith, D. (2008). Brain arterial vascular territories. Radiopaedia.org. https://radiopaedia.org/articles/1085 | |
dc.relation | Smithuis, R. (2008). Vascular Territories. Radiology department of the Alrijne Hospital in Leiderdorp, the Netherlands. https://doi.org/10.1007/978-3-642- 54404-0_8 | |
dc.relation | Snell, R. (2010). Neuroanatomía clínica (M. C. Pont Sunyer (ed.); 7.a ed.). Lippincott Williams y Wilkins. | |
dc.relation | Sosa, M. (2016). How to create an NRRD file from a DICOM Medical Imaging Data Set. 3D Printing in Medicine. https://www.embodi3d.com/blogs/entry/341-howto-create-an-nrrd-file-from-a-dicom-medical-imaging-data-set/ | |
dc.relation | Southerland, A. M. (2017). Clinical Evaluation of the Patient with Acute Stroke. CONTINUUM Lifelong Learning in Neurology, 23(1), 40-61. https://doi.org/10.1212/CON.0000000000000437 | |
dc.relation | Sperandei, S. (2014). Understanding logistic regression analysis. Biochemia Medica, 24(1), 12-18. https://doi.org/10.11613/BM.2014.003 | |
dc.relation | Swaminathan, S. (2018). Logistic Regression — Detailed Overview | by Saishruthi Swaminathan | Towards Data Science. TowardsDataScience. https://towardsdatascience.com/logistic-regression-detailed-overview46c4da4303bc | |
dc.relation | Trinidad Sabalete, M., Gil, A. M., Palenzuela Navarro, C., Gomez, I., Romero Rodriguez, R., y Lopez Benot, S. (2015). Evaluación de técnicas de neuroimagen (RM / TC) en el ictus agudo. Tecnicas de neuroimagen Ictus, 1, 1-93. | |
dc.relation | Van Griethuyse, J., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., GH Beets-Tan, R., Fillion Robin, J. C., Pieper, S., y Aerts, H. (2017). Computational Radiomics System to Decode the Radiographic Phenotype. Physiology and behavior, 176(10), 139-148. https://doi.org/10.1158/0008-5472.CAN-17- 0339.Computational | |
dc.relation | Van Timmeren, J. E., Cester, D., Tanadini-Lang, S., Alkadhi, H., y Baessler, B. (2020). Radiomics in medical imaging—“how-to” guide and critical reflection. Insights into Imaging, 11(1). https://doi.org/10.1186/s13244-020-00887-2 | |
dc.relation | Vilela, P., y Rowley, H. A. (2017). Brain ischemia: CT and MRI techniques in acute ischemic stroke. European Journal of Radiology, 96(August), 162-172. https://doi.org/10.1016/j.ejrad.2017.08.014 | |
dc.relation | Villa, L. (2004). Ataque Cerebrovascular. Asociacion Colombiana de neurologia, 7, 33. http://www.acnweb.org/guia/g3cap7.pdf | |
dc.relation | Vivas, H. (2014). Optimización en el entrenamiento del Perceptrón Multicapa. Universidad del Cauca. Wesner, J. (2016). MAE and RMSE, Which Metric is Better? Medium. https://medium.com/human-in-a-machine-world/mae-and-rmse-which-metricis-better-e60ac3bde13d | |
dc.relation | Wintermark, M., Sanelli, P. C., Albers, G. W., Bello, J. A., Derdeyn, C. P., Hetts, S. W., Johnson, M. H., Kidwell, C. S., Lev, M. H., Liebeskind, D. S., Rowley, H. A., Schaefer, P. W., Sunshine, J. L., Zaharchuk, G., y Meltzer, C. C. (2013). Imaging recommendations for acute stroke and transient ischemic attack patients: A joint statement by the American Society of Neuroradiology, the American College of Radiology and the Society of NeuroInterventional Surgery. Journal of the American College of Radiology, 10(11), 828-832. https://doi.org/10.1016/j.jacr.2013.06.019 | |
dc.relation | Wirth, R., y Hipp, J. (2000). CRISP-DM: towars a standard process model for data mining. 29-39. https://www.researchgate.net/publication/239585378_CRISPDM_Towards_a_standard_process_model_for_data_mining | |
dc.relation | Yalçın, O. G., y Istanbul, T. (2021). Applied Neural Networks with TensorFlow 2: API Oriented Deep Learning with Python. En A. Black, J. Markham, y J. Valkili (Eds.), Springer Science+Business (1.a ed.). Apress Media LLC. https://doi.org/10.1
07/978-1-4842-6513-0 | |
dc.relation | Zelada, C. (2017). Evaluación de modelos de clasificación Introducción. Rpubs. https://rpubs.com/chzelada/275494 | |
dc.relation | Zhang, Z. (2016). Naïve bayes classification in R. Annals of Translational Medicine, 4(12), 1-5. https://doi.org/10.21037/atm.2016.03.38 | |
dc.relation | Zhu, H., Jiang, L., Zhang, H., Luo, L., Chen, Y., y Chen, Y. (2021). An automatic machine learning approach for ischemic stroke onset time identification based on DWI and FLAIR imaging. NeuroImage: Clinical, 31, 102744. https://doi.org/10.1016/j.nicl.2021.102744 | |
dc.relation | Zhu, W., Zeng, N., y Wang, N. (2010). Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS® implementations. Northeast SAS Users Group 2010: Health Care and Life Sciences, 1-9. | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | Derechos reservados - Universidad Autónoma de Occidente, 2022 | |
dc.subject | Ingeniería Biomédica | |
dc.title | Estimación de tiempo de evolución de enfermedad cerebrovascular isquémica en paciente mediante aprendizaje automático en el Departamento de Radiología de la Fundación Valle de Lili | |
dc.type | Trabajo de grado - Pregrado | |