dc.creatorVásquez Sarria, Nancy
dc.creatorRivera Velasco, Daniela María
dc.creatorLarrahondo Chávez, Diego Alejandro
dc.creatorMazuera Ríos, Hernán David
dc.creatorGandini Ayerbe, Mario Andrés
dc.creatorGoyes López, Clara Eugenia
dc.creatorMejía Villareal, Isabel María
dc.date.accessioned2023-05-09T18:55:33Z
dc.date.accessioned2023-06-06T15:09:13Z
dc.date.available2023-05-09T18:55:33Z
dc.date.available2023-06-06T15:09:13Z
dc.date.created2023-05-09T18:55:33Z
dc.date.issued2022-12
dc.identifier26660164
dc.identifierhttps://hdl.handle.net/10614/14724
dc.identifierUniversidad Autónoma de Occidente
dc.identifierRepositorio Educativo Digital UAO
dc.identifierhttps://red.uao.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6649615
dc.description.abstractA study for recovering struvite and hydroxyapatite from wastewater produced on the campus of the Autonoma ´ de Occidente University was conducted, as an option to nutrients recovery. The experiments were carried out using magnesium chloride as precipitation reagent, at pH between 8,0 and 12,8 units for raw wastewater (RW), and between 8,8 and 13,2 units for treated wastewater (TW). A sludge with crystalline structures with dendritic, cruciform and rod morphologies associated with struvite was obtained; although amorphous particles associated with hydroxyapatite and other apatites that can be formed during the processes. In order to guarantee the predominance of struvite and hydroxyapatite over others salts that could be formed, it is necessary to adjust the molar fractions of Mg2+: PO4 3− : NH4 + and Ca2+: PO4 3− , which for the case under study were conditioned by the availability of phosphates in the wastewater.
dc.languageeng
dc.publisherElsevier
dc.relation12
dc.relation1
dc.relation6
dc.relationVásquez Sarria, N., Rivera Velasco, D.M., Larrahondo Chávez, D.A., Mazuera Ríos, H.D., Gandini Ayerbe, M. A., Goyes López, C.E., Mejía Villareal, I. M. (2022). Struvite and hydroxyapatite recovery from wastewater treatment plant at Autónoma de Occidente University, Colombia. Case Studies in Chemical and Environmental Engineering. Elsevier, vol. 6, pp. 1-12. doi.org/10.1016/j.cscee.2022.100213
dc.relationChemical and Environmental Engineering
dc.relationA.R. Eugercios Silva, M. Alvarez ´ Cobelas, E. y Montero Gonz´ alez, Impactos del nitrogeno ´ agrícola en los ecosistemas acuaticos, ´ Ecosistemas 26 (mar. 2017) (2017) 37–44, https://doi.org/10.7818/ECOS.1309, 1.
dc.relationC. Kennedy, J. Cuddihy, J. Engel-Yan, The changing metabolism of cities, J. Ind. Ecol. 11 (2007) 43–59, https://doi.org/10.1162/jie.2007.1107.
dc.relationZ. Yuan, S. Pratt, D.J. Batstone, Phosphorus recovery from wastewater through microbial processes, Curr. Opin. Biotechnol. 23 (2012) 878–883, https://doi.org/ 10.1016/j.copbio.2012.08.001
dc.relationR. Reardon, J. Davel, D. Baune, S. McDonald, R. Appleton, R. Gillette, Wastewater treatment plants of the future: current trends shape future plans, J. Fla. Water Resour. (2013) 8–14. January 2013, http://fwrj.com/techarticles/0113%20tech1. pdf
dc.relationA.E. Johnston, I.R. Richards, Effectiveness of different precipitated phosphates as phosphorus sources for plants, phosphorus, Res. Bull. 15 (2004) 52–59, https:// doi.org/10.3363/prb1992.15.0_52, 2004
dc.relationS.A.G. Manrique, Estudio de soluciones para los problemas de precipitacion ´ incontrolada en la línea de fangos de la Edar Murcia-este, Universitat Polit`ecnica de Val`encia, 2012. M´ aster Universitario en Ingeniería Hidr´ aulica y Medio Ambiente-M` aster Universitari en Enginyeria Hidraulica ` i Medi Ambient. Recuperado de: http://hdl.handle.net/10251/27383.
dc.relationB.-H. Zenah, L. Paul, L. Gregory, Phosphorus recovery from centralised municipal water recycling plants, Chem. Eng. Res. Des. 90 (1) (2012) 78–85, https://doi.org/ 10.1016/j.cherd.2011.08.006, 2012
dc.relationE.V. Münch, E. Barr, Controlled Struvite Crystallisation for Removing Phosphorus from Anaerobic Digester Sidestreams, Water Research 35 (2001) 151–159, https:// doi.org/10.1016/S0043-1354(00)00236-0.
dc.relationX. Liu, J. Wang, Impact of calcium on struvite crystallization in the waste water and its competition with magnesium, Chem. Eng. J. 378 (2019), 122121. https:// doi:10.1016/j.cej.2019.122121
dc.relationD. Crutchik, A. Sanchez, ´ J.M. Garrido, Simulation and experimental validation of multiple phosphate precipitates in a saline industrial wastewater, Separation and Purification Technology 118 (2013) 81–88, https://doi.org/10.1016/j. seppur.2013.06.041
dc.relationG.F. Prieto, H.J. Callejas, C.V.E. Reyes, S.Y. Marmolejo, M.A. M´endez, A. J. Hern´ andez, C.A. P´erez, Recovery and characterization of struvite from sediment and sludge resulting from the process of acid whey electrocoagulation, Asian J. Chem. 25 (14) (2013) 8005–8009, https://doi.org/10.14233/ajchem.2013.14933, 2013.
dc.relationMd. Mukhlesur Rahman, Mohamad Amran Mohd Salleh, Umer Rashid Rashid, Amimul Ahsan Ahsan, Mohammad Mujaffar Hossain, Chang Six Ra, Production of slow release crystal fertilizer from wastewaters through struvite crystallization - a review, Arabian Journal of Chemistry 7 (2014) 139–155, https://doi.org/10.1016/ j.arabjc.2013.10.007.
dc.relationP. Cornel, C. Schaum, Phosphorus recovery from wastewater: needs, technologies and costs, Water Sci. Technol. 59 (6) (2009), https://doi.org/10.2166/ wst.2009.045.
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos reservados - Elsevier Ltd, 2022
dc.titleStruvite and hydroxyapatite recovery from wastewater treatment plant at Autónoma de Occidente University, Colombia
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución