dc.creator | Vásquez Sarria, Nancy | |
dc.creator | Rivera Velasco, Daniela María | |
dc.creator | Larrahondo Chávez, Diego Alejandro | |
dc.creator | Mazuera Ríos, Hernán David | |
dc.creator | Gandini Ayerbe, Mario Andrés | |
dc.creator | Goyes López, Clara Eugenia | |
dc.creator | Mejía Villareal, Isabel María | |
dc.date.accessioned | 2023-05-09T18:55:33Z | |
dc.date.accessioned | 2023-06-06T15:09:13Z | |
dc.date.available | 2023-05-09T18:55:33Z | |
dc.date.available | 2023-06-06T15:09:13Z | |
dc.date.created | 2023-05-09T18:55:33Z | |
dc.date.issued | 2022-12 | |
dc.identifier | 26660164 | |
dc.identifier | https://hdl.handle.net/10614/14724 | |
dc.identifier | Universidad Autónoma de Occidente | |
dc.identifier | Repositorio Educativo Digital UAO | |
dc.identifier | https://red.uao.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6649615 | |
dc.description.abstract | A study for recovering struvite and hydroxyapatite from wastewater produced on the campus of the Autonoma ´ de
Occidente University was conducted, as an option to nutrients recovery. The experiments were carried out using
magnesium chloride as precipitation reagent, at pH between 8,0 and 12,8 units for raw wastewater (RW), and
between 8,8 and 13,2 units for treated wastewater (TW). A sludge with crystalline structures with dendritic,
cruciform and rod morphologies associated with struvite was obtained; although amorphous particles associated
with hydroxyapatite and other apatites that can be formed during the processes. In order to guarantee the
predominance of struvite and hydroxyapatite over others salts that could be formed, it is necessary to adjust the
molar fractions of Mg2+: PO4
3− : NH4
+ and Ca2+: PO4
3− , which for the case under study were conditioned by the
availability of phosphates in the wastewater. | |
dc.language | eng | |
dc.publisher | Elsevier | |
dc.relation | 12 | |
dc.relation | 1 | |
dc.relation | 6 | |
dc.relation | Vásquez Sarria, N., Rivera Velasco, D.M., Larrahondo Chávez, D.A., Mazuera Ríos, H.D., Gandini Ayerbe, M. A., Goyes López, C.E., Mejía Villareal, I. M. (2022). Struvite and hydroxyapatite recovery from wastewater treatment plant at Autónoma de Occidente University, Colombia. Case Studies in Chemical and Environmental Engineering. Elsevier, vol. 6, pp. 1-12. doi.org/10.1016/j.cscee.2022.100213 | |
dc.relation | Chemical and Environmental Engineering | |
dc.relation | A.R. Eugercios Silva, M. Alvarez ´ Cobelas, E. y Montero Gonz´ alez, Impactos del nitrogeno ´ agrícola en los ecosistemas acuaticos, ´ Ecosistemas 26 (mar. 2017) (2017) 37–44, https://doi.org/10.7818/ECOS.1309, 1. | |
dc.relation | C. Kennedy, J. Cuddihy, J. Engel-Yan, The changing metabolism of cities, J. Ind. Ecol. 11 (2007) 43–59, https://doi.org/10.1162/jie.2007.1107. | |
dc.relation | Z. Yuan, S. Pratt, D.J. Batstone, Phosphorus recovery from wastewater through microbial processes, Curr. Opin. Biotechnol. 23 (2012) 878–883, https://doi.org/ 10.1016/j.copbio.2012.08.001 | |
dc.relation | R. Reardon, J. Davel, D. Baune, S. McDonald, R. Appleton, R. Gillette, Wastewater treatment plants of the future: current trends shape future plans, J. Fla. Water Resour. (2013) 8–14. January 2013, http://fwrj.com/techarticles/0113%20tech1. pdf | |
dc.relation | A.E. Johnston, I.R. Richards, Effectiveness of different precipitated phosphates as phosphorus sources for plants, phosphorus, Res. Bull. 15 (2004) 52–59, https:// doi.org/10.3363/prb1992.15.0_52, 2004 | |
dc.relation | S.A.G. Manrique, Estudio de soluciones para los problemas de precipitacion ´ incontrolada en la línea de fangos de la Edar Murcia-este, Universitat Polit`ecnica de Val`encia, 2012. M´ aster Universitario en Ingeniería Hidr´ aulica y Medio Ambiente-M` aster Universitari en Enginyeria Hidraulica ` i Medi Ambient. Recuperado de: http://hdl.handle.net/10251/27383. | |
dc.relation | B.-H. Zenah, L. Paul, L. Gregory, Phosphorus recovery from centralised municipal water recycling plants, Chem. Eng. Res. Des. 90 (1) (2012) 78–85, https://doi.org/ 10.1016/j.cherd.2011.08.006, 2012 | |
dc.relation | E.V. Münch, E. Barr, Controlled Struvite Crystallisation for Removing Phosphorus from Anaerobic Digester Sidestreams, Water Research 35 (2001) 151–159, https:// doi.org/10.1016/S0043-1354(00)00236-0. | |
dc.relation | X. Liu, J. Wang, Impact of calcium on struvite crystallization in the waste water and its competition with magnesium, Chem. Eng. J. 378 (2019), 122121. https:// doi:10.1016/j.cej.2019.122121 | |
dc.relation | D. Crutchik, A. Sanchez, ´ J.M. Garrido, Simulation and experimental validation of multiple phosphate precipitates in a saline industrial wastewater, Separation and Purification Technology 118 (2013) 81–88, https://doi.org/10.1016/j. seppur.2013.06.041 | |
dc.relation | G.F. Prieto, H.J. Callejas, C.V.E. Reyes, S.Y. Marmolejo, M.A. M´endez, A. J. Hern´ andez, C.A. P´erez, Recovery and characterization of struvite from sediment and sludge resulting from the process of acid whey electrocoagulation, Asian J. Chem. 25 (14) (2013) 8005–8009, https://doi.org/10.14233/ajchem.2013.14933, 2013. | |
dc.relation | Md. Mukhlesur Rahman, Mohamad Amran Mohd Salleh, Umer Rashid Rashid, Amimul Ahsan Ahsan, Mohammad Mujaffar Hossain, Chang Six Ra, Production of slow release crystal fertilizer from wastewaters through struvite crystallization - a review, Arabian Journal of Chemistry 7 (2014) 139–155, https://doi.org/10.1016/ j.arabjc.2013.10.007. | |
dc.relation | P. Cornel, C. Schaum, Phosphorus recovery from wastewater: needs, technologies and costs, Water Sci. Technol. 59 (6) (2009), https://doi.org/10.2166/ wst.2009.045. | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | Derechos reservados - Elsevier Ltd, 2022 | |
dc.title | Struvite and hydroxyapatite recovery from wastewater treatment plant at Autónoma de Occidente University, Colombia | |
dc.type | Artículo de revista | |