dc.creatorMartínez Velásquez, Heberth Fabián
dc.creatorMondragón Martínez, Oscar Hernán
dc.creatorRubio Wilson, Helmut Alexander
dc.creatorMárquez Franco, Jack Daniel
dc.date.accessioned2023-05-15T19:24:40Z
dc.date.accessioned2023-06-06T15:08:10Z
dc.date.available2023-05-15T19:24:40Z
dc.date.available2023-06-06T15:08:10Z
dc.date.created2023-05-15T19:24:40Z
dc.date.issued2022-07-29
dc.identifier2073431X
dc.identifierhttps://hdl.handle.net/10614/14740
dc.identifierUniversidad Autónoma de Occidente
dc.identifierRepositorio Educativo Digital UAO
dc.identifierhttps://red.uao.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6649586
dc.description.abstractFault tolerance and the availability of applications, computing infrastructure, and commu- nications systems during unexpected events are critical in cloud environments. The microservices architecture, and the technologies that it uses, should be able to maintain acceptable service levels in the face of adverse circumstances. In this paper, we discuss the challenges faced by cloud infrastruc- ture in relation to providing resilience to applications. Based on this analysis, we present our approach for a software platform based on a microservices architecture, as well as the resilience mechanisms to mitigate the impact of infrastructure failures on the availability of applications. We demonstrate the capacity of our platform to provide resilience to analytics applications, minimizing service interruptions and keeping acceptable response times.
dc.languageeng
dc.publisherMDPI
dc.publisherBasel, Suiza
dc.relation21
dc.relation8
dc.relation1
dc.relation11
dc.relationMartínez Velásquez, H. F., Mondragón Martínez, O. H., Rubio Wilson, H. A., Márquez Franco, J. D. (2022). Computational and Communication Infrastructure Challenges for Resilient Cloud Services. Computers, 11(8), pp. 1-14
dc.relationComputers
dc.relationAbdullah, M.; Iqbal, W.; Bukhari, F.; Erradi, A. Diminishing returns and deep learning for adaptive CPU resource allocation of containers. IEEE Trans. Netw. Serv. Manag. 2020, 17, 2052–2063
dc.relationPueyo Centelles, R.; Freitag, F.; Meseguer, R.; Navarro, L.; Ochoa, S.; Santos, R. A LoRa-Based Communication System for Coordinated Response in an Earthquake Aftermath. Proceedings 2019, 31, 73.
dc.relationOliveira, L.; Rodrigues, J.J.; Kozlov, S.A.; Rabêlo, R.A.; Furtado, V. Performance assessment of long-range and Sigfox protocols with mobility support. Int. J. Commun. Syst. 2019, 32, e3956.
dc.relationHinds, A.; Ngulube, M.; Zhu, S.; Al-Aqrabi, H. A review of routing protocols for mobile ad-hoc networks (manet). Int. J. Inf. Educ. Technol. 2013, 3, 1.
dc.relationJorguseski, L.; Pais, A.; Gunnarsson, F.; Centonza, A.; Willcock, C. Self-organizing networks in 3GPP: Standardization and future trends. IEEE Commun. Mag. 2014, 52, 28–34
dc.relationArzani, B.; Gurney, A.; Cheng, S.; Guerin, R.; Loo, B.T. Deconstructing MPTCP performance. In Proceedings of the 2014 IEEE 22nd International Conference on Network Protocols, Raleigh, NC, USA, 21–24 October 2014; pp. 269–274
dc.relationFeamster, N.; Rexford, J.; Zegura, E. The road to SDN: An intellectual history of programmable networks. ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 87–98
dc.relationMachado, C.C.; Granville, L.Z.; Schaeffer-Filho, A. ANSwer: Combining NFV and SDN features for network resilience strategies. In Proceedings of the 2016 IEEE Symposium on Computers and Communication (ISCC), Messina, Italy, 27–30 June 2016; pp. 391–396
dc.relationCérin, C.; Menouer, T.; Saad, W.; Abdallah, W.B. A new docker swarm scheduling strategy. In Proceedings of the 2017 IEEE 7th International Symposium on Cloud and Service Computing (SC2), Kanazawa, Japan, 22–25 November 2017; pp. 112–117.
dc.relationBuchanan, S.; Rangama, J. Deploying and Using Rancher with Azure Kubernetes Service. Available online: https://link.springer. com/chapter/10.1007/978-1-4842-5519-3_6 (accessed on 12 July 2022).
dc.relationLee, S.; Levanti, K.; Kim, H.S. Network monitoring: Present and future. Comput. Netw. 2014, 65, 84–98
dc.relationKurtzer, G.M.; Sochat, V.; Bauer, M.W. Singularity: Scientific containers for mobility of compute. PLoS ONE 2017, 12, e0177459
dc.relationMirkin, A.; Kuznetsov, A.; Kolyshkin, K. Containers checkpointing and live migration. In Proceedings of the Linux Symposium, Ottawa, ON, Canada, 23–26 July 2008; Volume 2, pp. 85–90
dc.relationde Carvalho, J.O.; Trinta, F.; Vieira, D. PacificClouds: A Flexible MicroServices based Architecture for Interoperability in Multi-Cloud Environments. In Proceedings of the 8th International Conference on Cloud Computing and Services Science (CLOSER 2018), Funchal, Portugal, 19–21 March 2018; pp. 448–455.
dc.relationSolarte, Z.; Gonzalez, J.D.; Peña, L.; Mondragon, O.H. Microservices-Based Architecture for Resilient Cities Applications. In Proceedings of the International Conference on Advanced Engineering Theory and Applications, Bogota, Colombia, 6–8 November 2019; pp. 423–432
dc.relationZhou, Z.; Zhang, H.; Du, X.; Li, P.; Yu, X. Prometheus: Privacy-aware data retrieval on hybrid cloud. In Proceedings of the 2013 Proceedings IEEE INFOCOM, Turin, Italy, 14–19 April 2013; pp. 2643–2651
dc.relationZhang, P.Y.; Chen, Y.T.; Zhou, M.C.; Xu, G.; Huang, W.J.; Al-Turki, Y.; Abusorrah, A. A Fault-tolerant Model for Performance Optimization of a Fog Computing System. IEEE Internet Things J. 2021, 9, 1725–1736.
dc.relationTang, X. Reliability-aware cost-efficient scientific workflows scheduling strategy on multi-cloud systems. IEEE Trans. Cloud Comput. 2021
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos reservados - MDPI, 2022
dc.titleComputational and communication infrastructure challenges for resilient cloud services
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución