dc.creator | Moreno Chuquen, Ricardo | |
dc.creator | Chamorro, Harold R. | |
dc.creator | Riquelme Domínguez, José Miguel | |
dc.creator | González Longatt, Francisco | |
dc.creator | Cantillo Luna, Cantillo Luna, Sergio Sergio | |
dc.date.accessioned | 2023-04-10T20:30:40Z | |
dc.date.accessioned | 2023-06-06T14:28:03Z | |
dc.date.available | 2023-04-10T20:30:40Z | |
dc.date.available | 2023-06-06T14:28:03Z | |
dc.date.created | 2023-04-10T20:30:40Z | |
dc.date.issued | 2022 | |
dc.identifier | 1996-1073 | |
dc.identifier | https://hdl.handle.net/10614/14654 | |
dc.identifier | Universidad Autónoma de Occidente | |
dc.identifier | Repositorio Educativo Digital | |
dc.identifier | https://red.uao.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6649398 | |
dc.description.abstract | Electricity markets provide valuable data for regulators, operators, and investors. The
use of machine learning methods for electricity market data could provide new insights about the
market, and this information could be used for decision-making. This paper proposes a tool based
on multi-output regression method using support vector machines (SVR) for LMP forecasting. The
input corresponds to the active power load of each bus, in this case obtained through Monte Carlo
simulations, in order to forecast LMPs. The LMPs provide market signals for investors and regulators.
The results showed the high performance of the proposed model, since the average prediction error
for fitting and testing datasets of the proposed method on the dataset was less than 1%. This provides
insights into the application of machine learning method for electricity markets given the context of
uncertainty and volatility for either real-time and ahead markets | |
dc.language | eng | |
dc.publisher | MDPI | |
dc.publisher | Basel | |
dc.relation | 14 | |
dc.relation | 1 | |
dc.relation | 1 | |
dc.relation | 15 | |
dc.relation | Cantillo Luna, S., Moreno Chuquen, R., Chamorro, H.R., Riquelme Domínguez, J.M., González Longatt, F. (2022). Locational marginal price forecasting using svr-based multi-output regression in electricity markets. Energies 15 (1), pp. 1-14. | |
dc.relation | Energies | |
dc.relation | Orfanogianni, T.; Gross, G. A General Formulation for LMP Evaluation. IEEE Trans. Power Syst. 2007, 22, 1163–1173 | |
dc.relation | Zheng, K.; Wang, Y.; Liu, K.; Chen, Q. Locational Marginal Price Forecasting: A Componential and Ensemble Approach. IEEE Trans. Smart Grid 2020, 11, 4555–4564 | |
dc.relation | Nesti, T.; Moriarty, J.; Zocca, A.; Zwart, B. Large fluctuations in locational marginal prices. Philos. Trans. R. Soc. A 2021, 379, 20190438. | |
dc.relation | Yang, Y.; Tan, Z.; Yang, H.; Ruan, G.; Zhong, H. Short-Term Electricity Price Forecasting based on Graph Convolution Network and Attention Mechanism. arXiv 2021, arXiv:2107.12794. | |
dc.relation | Moreno, R.; Obando, J.; Gonzalez, G. An integrated OPF dispatching model with wind power and demand response for day-ahead markets. Int. J. Electr. Comput. Eng. 2019, 9, 2794–2802. | |
dc.relation | Moreno-Chuquen, R.; Cantillo, S. Assessment of a Multiperiod Optimal Power Flow for Power System Operation. Int. Rev. Electr. Eng. 2020, 15, 484–492. | |
dc.relation | Lago, J.; Ridder, F.D.; Vrancx, P.; Schuttera, B.D. Forecasting day-ahead electricity prices in Europe: The importance of considering market integration. Appl. Energy 2018, 211, 890–903. | |
dc.relation | Cheng, H.; Ding, X.; Zhou, W.; Ding, R. A hybrid electricity price forecasting model with Bayesian optimization for German energy exchange. Int. J. Electr. Power Energy Syst. 2019, 100, 653–666. | |
dc.relation | Wang, D.; Yue, C.; ElAmraouid, A. Multi-step-ahead electricity load forecasting using a novel hybrid architecture with decomposition-based error correction strategy. Chaos Solitons Fractals 2021, 152, 111453 | |
dc.relation | Hong, Y.Y.; Taylar, J.V.; Fajardo, A.C. Locational marginal price forecasting in a day-ahead power market using spatiotemporal deep learning network. Sustain. Energy Grids Netw. 2020, 24, 100406 | |
dc.relation | Bernardi, M.; Lisi, F. Point and Interval Forecasting of Zonal Electricity Prices and Demand Using Heteroscedastic Models: The IPEX Case. Energies 2020, 13, 6191 | |
dc.relation | Colella, P.; Mazza, A.; Bompard, E.; Chicco, G.; Russo, A.; Carlini, E.M.; Caprabianca, M.; Quaglia, F.; Luzi, L.; Nuzzo, G. Model-Based Identification of Alternative Bidding Zones: Applications of Clustering Algorithms with Topology Constraints. Energies 2021, 14, 2763 | |
dc.relation | Chuquen, R.M.; Chamorro, H.R. Graph Theory Applications to Deregulated Power Systems; Springer International Publishing: Berlin, Germany, 2021 | |
dc.relation | Germany, 2021. [CrossRef] 25. Ahmad, W.; Ayub, N.; Ali, T.; Irfan, M.; Awais, M.; Shiraz, M.; Glowacz, A. Towards Short Term Electricity Load Forecasting Using Improved Support Vector Machine and Extreme Learning Machine. Energies 2020, 13, 2907. [ | |
dc.relation | Ma, Z.; Zhong, H.; Xie, L.; Xia, Q.; Kang, C. Month ahead average daily electricity price profile forecasting based on a hybrid nonlinear regression and SVM model: An ERCOT case study. J. Mod. Power Syst. Clean Energy 2018, 6, 281–291. | |
dc.relation | Atef, S.; Eltawil, A.B. A Comparative Study Using Deep Learning and Support Vector Regression for Electricity Price Forecasting in Smart Grids; IEEE: Piscataway, NJ, USA, 2019. | |
dc.relation | Zhang, Z.; Wu, M. Real-time Locational Marginal Price Forecasting Using Generative Adversarial Network. In Proceedings of the 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids, Tempe, AZ, USA, 11–13 November 2020 | |
dc.relation | Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. | |
dc.relation | Department of Electrical Engineering, University of Washington. Power Systems Test Case Archive; Department of Electrical Engineering, University of Washington: Washington, DC, USA, 2021. Available online: http://labs.ece.uw.edu/pstca/ (accessed on 15 October 2021) | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | Derechos Reservados Revista Energies MDPI | |
dc.rights | Derechos reservados - MDPI, 2022 | |
dc.title | Locational marginal price forecasting using svr-based multi-output regression in electricity markets | |
dc.type | Artículo de revista | |