dc.creatorMoreno Chuquen, Ricardo
dc.creatorChamorro, Harold R.
dc.creatorRiquelme Domínguez, José Miguel
dc.creatorGonzález Longatt, Francisco
dc.creatorCantillo Luna, Cantillo Luna, Sergio Sergio
dc.date.accessioned2023-04-10T20:30:40Z
dc.date.accessioned2023-06-06T14:28:03Z
dc.date.available2023-04-10T20:30:40Z
dc.date.available2023-06-06T14:28:03Z
dc.date.created2023-04-10T20:30:40Z
dc.date.issued2022
dc.identifier1996-1073
dc.identifierhttps://hdl.handle.net/10614/14654
dc.identifierUniversidad Autónoma de Occidente
dc.identifierRepositorio Educativo Digital
dc.identifierhttps://red.uao.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6649398
dc.description.abstractElectricity markets provide valuable data for regulators, operators, and investors. The use of machine learning methods for electricity market data could provide new insights about the market, and this information could be used for decision-making. This paper proposes a tool based on multi-output regression method using support vector machines (SVR) for LMP forecasting. The input corresponds to the active power load of each bus, in this case obtained through Monte Carlo simulations, in order to forecast LMPs. The LMPs provide market signals for investors and regulators. The results showed the high performance of the proposed model, since the average prediction error for fitting and testing datasets of the proposed method on the dataset was less than 1%. This provides insights into the application of machine learning method for electricity markets given the context of uncertainty and volatility for either real-time and ahead markets
dc.languageeng
dc.publisherMDPI
dc.publisherBasel
dc.relation14
dc.relation1
dc.relation1
dc.relation15
dc.relationCantillo Luna, S., Moreno Chuquen, R., Chamorro, H.R., Riquelme Domínguez, J.M., González Longatt, F. (2022). Locational marginal price forecasting using svr-based multi-output regression in electricity markets. Energies 15 (1), pp. 1-14.
dc.relationEnergies
dc.relationOrfanogianni, T.; Gross, G. A General Formulation for LMP Evaluation. IEEE Trans. Power Syst. 2007, 22, 1163–1173
dc.relationZheng, K.; Wang, Y.; Liu, K.; Chen, Q. Locational Marginal Price Forecasting: A Componential and Ensemble Approach. IEEE Trans. Smart Grid 2020, 11, 4555–4564
dc.relationNesti, T.; Moriarty, J.; Zocca, A.; Zwart, B. Large fluctuations in locational marginal prices. Philos. Trans. R. Soc. A 2021, 379, 20190438.
dc.relationYang, Y.; Tan, Z.; Yang, H.; Ruan, G.; Zhong, H. Short-Term Electricity Price Forecasting based on Graph Convolution Network and Attention Mechanism. arXiv 2021, arXiv:2107.12794.
dc.relationMoreno, R.; Obando, J.; Gonzalez, G. An integrated OPF dispatching model with wind power and demand response for day-ahead markets. Int. J. Electr. Comput. Eng. 2019, 9, 2794–2802.
dc.relationMoreno-Chuquen, R.; Cantillo, S. Assessment of a Multiperiod Optimal Power Flow for Power System Operation. Int. Rev. Electr. Eng. 2020, 15, 484–492.
dc.relationLago, J.; Ridder, F.D.; Vrancx, P.; Schuttera, B.D. Forecasting day-ahead electricity prices in Europe: The importance of considering market integration. Appl. Energy 2018, 211, 890–903.
dc.relationCheng, H.; Ding, X.; Zhou, W.; Ding, R. A hybrid electricity price forecasting model with Bayesian optimization for German energy exchange. Int. J. Electr. Power Energy Syst. 2019, 100, 653–666.
dc.relationWang, D.; Yue, C.; ElAmraouid, A. Multi-step-ahead electricity load forecasting using a novel hybrid architecture with decomposition-based error correction strategy. Chaos Solitons Fractals 2021, 152, 111453
dc.relationHong, Y.Y.; Taylar, J.V.; Fajardo, A.C. Locational marginal price forecasting in a day-ahead power market using spatiotemporal deep learning network. Sustain. Energy Grids Netw. 2020, 24, 100406
dc.relationBernardi, M.; Lisi, F. Point and Interval Forecasting of Zonal Electricity Prices and Demand Using Heteroscedastic Models: The IPEX Case. Energies 2020, 13, 6191
dc.relationColella, P.; Mazza, A.; Bompard, E.; Chicco, G.; Russo, A.; Carlini, E.M.; Caprabianca, M.; Quaglia, F.; Luzi, L.; Nuzzo, G. Model-Based Identification of Alternative Bidding Zones: Applications of Clustering Algorithms with Topology Constraints. Energies 2021, 14, 2763
dc.relationChuquen, R.M.; Chamorro, H.R. Graph Theory Applications to Deregulated Power Systems; Springer International Publishing: Berlin, Germany, 2021
dc.relationGermany, 2021. [CrossRef] 25. Ahmad, W.; Ayub, N.; Ali, T.; Irfan, M.; Awais, M.; Shiraz, M.; Glowacz, A. Towards Short Term Electricity Load Forecasting Using Improved Support Vector Machine and Extreme Learning Machine. Energies 2020, 13, 2907. [
dc.relationMa, Z.; Zhong, H.; Xie, L.; Xia, Q.; Kang, C. Month ahead average daily electricity price profile forecasting based on a hybrid nonlinear regression and SVM model: An ERCOT case study. J. Mod. Power Syst. Clean Energy 2018, 6, 281–291.
dc.relationAtef, S.; Eltawil, A.B. A Comparative Study Using Deep Learning and Support Vector Regression for Electricity Price Forecasting in Smart Grids; IEEE: Piscataway, NJ, USA, 2019.
dc.relationZhang, Z.; Wu, M. Real-time Locational Marginal Price Forecasting Using Generative Adversarial Network. In Proceedings of the 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids, Tempe, AZ, USA, 11–13 November 2020
dc.relationPedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
dc.relationDepartment of Electrical Engineering, University of Washington. Power Systems Test Case Archive; Department of Electrical Engineering, University of Washington: Washington, DC, USA, 2021. Available online: http://labs.ece.uw.edu/pstca/ (accessed on 15 October 2021)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos Reservados Revista Energies MDPI
dc.rightsDerechos reservados - MDPI, 2022
dc.titleLocational marginal price forecasting using svr-based multi-output regression in electricity markets
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución