dc.contributorElsevier
dc.creatorSommerfeld, Martin
dc.creatorCastang Montiel, Carlos Eduardo
dc.creatorGarcía Mina, Diego Felipe
dc.creatorLain Beatove, Santiago
dc.date.accessioned2023-05-05T20:01:50Z
dc.date.accessioned2023-06-06T14:26:53Z
dc.date.available2023-05-05T20:01:50Z
dc.date.available2023-06-06T14:26:53Z
dc.date.created2023-05-05T20:01:50Z
dc.date.issued2022-03
dc.identifier00325910
dc.identifierhttps://hdl.handle.net/10614/14702
dc.identifierUniversidad Autónoma de Occidente
dc.identifierRepositorio Educativo Digital UAO
dc.identifierhttps://red.uao.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6649356
dc.description.abstractIn industrial processes such as those related with paper industry, coal or biomass combustion, particles can take irregular non-spherical shapes. However, in related numerical computations the assumption of spherical particle is customary, mainly because the fluid dynamic forces acting on such irregular particles are unknown to a large extent. This contribution aims to generate new information about the flow resistance coefficients (forces and torques) experienced by non-spherical irregular-shaped particles with three different degrees of sphericity ψ (0.7, 0.8 and 0.89) immersed in a uniform flow at intermediate Reynolds numbers (i.e. Re = 1–200). For this pur- pose, Particle Resolved Direct Numerical Simulations (PR-DNS) are carried out by means of the Ansys-Fluent code using body fitted meshes where the irregular particle is well resolved. The flow coefficients are computed for a set of different particles belonging to the same sphericity group, considering a large number of orientations, which allows the construction of the corresponding distribution functions. Such distributions depend on Reynolds num- ber and particle sphericity and can be reasonably well approximated by Gaussian distributions, which are deter- mined by a mean value and a standard deviation. The obtained drag, lift and torque coefficients display expectedly a scattering around the mean values with a high sensitivity to the irregularity of the surface and par- ticle intrinsic aspect ratio (φ). Additionally, the distribution of the angle formed between the transverse lift force and the transverse torque in the plane orthogonal to the flow direction is computed. The generated information will be used to further pursue a novel statistical model for the fluid dynamic forces and torques acting on irregular particles in the frame of the Lagrangian approach
dc.languageeng
dc.publisherElsevier
dc.relation16
dc.relation1
dc.relation402
dc.relationSommerfeld, M., García, D. F., Lain, S.,. Castang C. E. (2022). Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers. Powder Technology, vol. 402. pp. 1-16
dc.relationPowder Technology
dc.relationBlender 2.92 Reference Manual, https://docs.blender.org/manual/en/latest/index. html Visited 4th January 2021.
dc.relationL. Grega, S. Anderson, M. Cheetham, M. Clemente, A. Colletti, W. Moy, D. Talarico, S.L. Thatcher, J.M. Osborn, Aerodynamic characteristics of Saccate pollen grains, Int. J. Plant Sci. 174 (2013) 499–510, https://doi.org/10.1086/668694
dc.relationK. Chu, J. Chen, A. Yu, A. Vince, Particle scale modelling of the multiphase flow in a dense medium cyclone: effect of medium-to-coal ratio, Sydney, Australia 2013, pp. 1182–1185, https://doi.org/10.1063/1.4812148.
dc.relationM. Zastawny, G. Mallouppas, F. Zhao, B. van Wachem, Derivation of drag and lift force and torque coefficients for non-spherical particles in flows, Int. J. Multiph. Flow. 39 (2012) 227–239, https://doi.org/10.1016/j.ijmultiphaseflow.2011.09.004
dc.relationG. Bagheri, C. Bonadonna, On the drag of freely falling non-spherical particles, Pow- der Technol. 301 (2016) 526–544, https://doi.org/10.1016/j.powtec.2016.06.015
dc.relationFilippone, N. Bojdo, Turboshaft engine air particle separation, Prog. Aerosp. Sci. 46 (2010) 224–245, https://doi.org/10.1016/j.paerosci.2010.02.001.
dc.relation.E. Jewell-Larsen, S.V. Karpov, H. Ran, P. Savalia, K.A. Honer, Investigation of dust in electrohydrodynamic (EHD) systems, IEEE 2010, pp. 249–255, https://doi.org/10. 1109/STHERM.2010.5444283.
dc.relationMeasurement and Analysis of Sediment Loads in Streams, Inter-Agency Committee on Water Resources, Minneapolis, Minnesota 1957
dc.relationM. Göğüş, O.N. İpekç i•, M.A. Kökpinar, Effect of particle shape on fall velocity of an- gular particles, J. Hydraul. Eng. 127 (2001) 860–869.
dc.relationD.A. Smith, Effect of Particle Shape on Grain Size, Hydraulic, and Transport Charac- teristics of Calcareous Sand, University of Hawaii, 2003
dc.relationG.R. Alger, D.B. Simons, Fall velocity of irregular shaped particles, J. Hydraul. Div. 94 (1968) 721–737. https://trid.trb.org/view/103861.
dc.relationF. Dioguardi, D. Mele, A new shape dependent drag correlation formula for non- spherical rough particles. Experiments and results, Powder Technol. 277 (2015) 222–230, https://doi.org/10.1016/j.powtec.2015.02.062
dc.relationR.A. Fletcher, D.S. Bright, Shape factors of ISO 12103-A3 (medium test dust), Filtr. Sep. 37 (2000)
dc.relationR. Clift, W.H. Gauvin, Proceedings of Chemeca 70, Butterworths, Melbourne, 1970
dc.relationG.H. Ganser, A rational approach to drag prediction of spherical and nonspherical particles, Powder Technol. 77 (1993) 143–152.
dc.relationR. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops, and Particles, Academic Press, New York, 1978.
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos reservados - Elsevier, 2022
dc.titleAerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución