dc.contributor | Universidad Autónoma de Occidente | |
dc.creator | Lain, Santiago | |
dc.date.accessioned | 2022-11-24T19:40:31Z | |
dc.date.accessioned | 2023-06-06T14:16:29Z | |
dc.date.available | 2022-11-24T19:40:31Z | |
dc.date.available | 2023-06-06T14:16:29Z | |
dc.date.created | 2022-11-24T19:40:31Z | |
dc.date.issued | 2007-05 | |
dc.identifier | 9789588122519 | |
dc.identifier | https://hdl.handle.net/10614/14438 | |
dc.identifier | Universidad Autónoma de Occidente | |
dc.identifier | Repositorio Educativo Digital | |
dc.identifier | https://red.uao.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6649237 | |
dc.description.abstract | Por Flujo Multifásico se entiende todo proceso termomecánico en el que interviene un fluido donde coexisten varias fases. La palabra fase adquiere aquí un sentido generalizado entendiéndose por tal tanto un estado de agregación de la materia como determinadas porciones materiales de una o varias sustancias distinguibles por saltos significativos de sus propiedades.
Dicho cambio puede consistir en variaciones, no solo de composición o estado, sino también de variables particulares: velocidad, vorticidad, entre otras.
El concepto de fase debe distinguirse del de componente el cual se define como una especie química. El flujo de aire, que está compuesto de una mezcla de gases (nitrógeno, oxígeno, etc.), es el mejor ejemplo de flujo monofásico multicomponente. En la práctica, este tipo de flujos se trata como el de una componente con una viscosidad y una conductividad térmica que representa la mezcla. | |
dc.language | spa | |
dc.publisher | Universidad Autónoma de Occidente | |
dc.publisher | Cali | |
dc.relation | Lain Beatove, S. (2007). Modelado y simulación de flujos inducidos por burbujas. Universidad Autónoma de Occidente. https://hdl.handle.net/10614/14438 | |
dc.relation | R. Aliod and C. Dopazo. A statistically conditioned averaging formalism for deriving two-phase flow equations. Part. Part. Syst. Charact., 7:191-202, 1990. | |
dc.relation | A. A. Aldama. Filtering techniq11,es for turbulent ftow simulation. Springer-Verlag, 1990. | |
dc.relation | O. Borchers, C. Busch, A. Sokolichin and G. Eigenberger. Applicability of the standard k - e turbulence model to the dynamic simulation of bubble columns: Part II. Comparison of detailed experiments and flow simulations. Chem. Eng. Sci., 54:5927-5935, 1999. | |
dc.relation | S. Becker, H. de Bie and J. Sweeney. Dynamic flow behaviour in bubble columns. Chem. Eng. Sci., 54:4929-4935, 1999. | |
dc.relation | J. Bardina, J. H. Ferziger and W. C. Reynolds. Improved subgrid scale model for large eddy simulation. AIAA Paper 80-1357, 1980. | |
dc.relation | D. Broder and M. Sommerfeld. Simultaneous measurements of continuous and dispersed phase in bubble columns by PDA. In Proc. 9th Int. Syrnp. on Applications of Laser Techniques to Fluid Mechanics, 1998. Lisbon, Portugal. | |
dc.relation | R. A. Clark, .J. H. Ferziger and W. C. Reynolds. Evaluation of subgrid models using an accurately simulated turbulent flow. Journal of Fluid Mechanics, 91:1-16, 1979. | |
dc.relation | R. Clift, J. R. Grace and M. E. Weber. Bubbles, drops and particles. Academic Press, 1979. | |
dc.relation | J. R. Chasnov. Simulation of the Kolmogoroff inertial subrange using an improved subgrid model. Physics of Fluids A, 3:188- 200, 1991. | |
dc.relation | J. J. Chen, M. Jamialahmadi and S. M. Li. Effects of liquid depth on circulation in bubble columns: a visual study. Chem. Eng. Res. Des., 67:203-207, 1989. | |
dc.relation | C. T. Crowe, M. P. Sharma and D. E. Stock. The particle-source- in-cell (PSI-cell) method for gas-droplet flows. J. Fluids Eng., 99:325-332, 1977. | |
dc.relation | N. Devanathan, M. P. Dudukovié, A. Lapin and A. Liibbert. Chaotic flow in buhble column reactors. Chem. Eng. Sci., 50:2661-2667, 1995. | |
dc.relation | F. A. Delnoij, J. A. M. Kuipers and W. P. M. van Swaaij. Computational fluid dynamics applied to gas-liquid contactors. Chem. Eng. Sci., 52:3623-3638, 1997. | |
dc.relation | F. A. Delnoij, J. A. M. Kuipers, W. P. M. van Swaaij and J. Westerweel. Measurements of gas-liquid two-phase flow in bubble columns using ensemble correlation PIV. Chem. Eng. Sci., 55:3385-3395, 2000. | |
dc.relation | J. H. Ferziger. Higher level simulations ofturbulent flows. In J.A. Essers, editor, Computational methods for turbulent, tmnsonic and viscous ftows. Springer-Verlag, 1983. | |
dc.relation | P. C. Friberg. Three-dimensional modelling and simulatíons of gas-liquid flow processes in bioreactors. Tesis doctoral, Telemark University College, Porsgrunn, Noruega, 1998. [FS97] | |
dc.relation | S. Ghosal, T. S. Lund, P. Moin and K. Aksevoll. A dynamic localization model for large-eddy simulation of turbulent flows. Journal of Fluid Mechanics, 286:229-255, 1995. | |
dc.relation | K. Hanjalié. Advanced turbulence closure models: a view of current status and future prospects. Int. Journal of Heat and Fluid Flow, 15:178-203, 1994. | |
dc.relation | S. Laín, D. Broder and M. Sommerfeld. Experimental and numerical studies of the hydrodynamics in a bubble column. Chem. Eng. Sci., 54:4913-4920, 1999. | |
dc.relation | S. Laín, D. Broder and M. Sommerfeld. Numerical simulations of the hydrodynamics in a bubble column: Quantitative comparisons with experiments. In Fourth Int. Conf. on Multiphase Flow, ICMF-2001, 2001. New Orleans, USA. | |
dc.relation | S. Laín, D. Broder, M. Sommerfeld and M. F. Goz. Modelling hydrodynamics and turbulence in a bubble column using the euler-lagrange procedure. Int. J. Multiphase Flow, 28:1381-1407, 2002. | |
dc.relation | M. Milleli, B. L. Smith and D. Lakehal. Sorne new approaches to bubble plume modeling using CFD. In Proc. Int. Mech. Eng. Congress and Exposition, 2001. New York, USA. | |
dc.relation | A. Ohnuki and H. Akimoto. Experimental study on transition of flow pattern and phase distribution in upward air-water two- phase flow along a vertical pipe. Int. J. Multiphase Flow, 26:367- 386, 2000. | |
dc.relation | U. Piomelli and J. Liu. Large-eddy simulation of rotating channel flows using a localized dynamic model. Physics of Fluids, 7(4):839-848, 1995. | |
dc.relation | K. D. Squires and J. K. Eaton. On the modelling of particle- laden turbulent flows. In Proc. 6th Workshop on Two-Phase Flow Predictions, 1992. Erlangen, Germany. | |
dc.relation | L. I. Zaichik and V. M. Alipchenkov. A kinetic model for the transport of arbitrary density particles in turbulent shear flows. In Proc. Turb1tlence and Shear Flow Phenomena 1, 1999. Sta. Barbara CA, USA. | |
dc.relation | I. Zun. The mechanism of bubble non-homogeneous distribution in two phase shear flow. Nucl. Eng. Des., 118:155, 1990. | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | Derechos reservados - Universidad Autónoma de Occidente, 2007 | |
dc.source | https://editorial.uao.edu.co/modelado-y-simulacion-de-flujos-inducidos-por-burbujas-fisica.html | |
dc.title | Modelado y simulación de flujos inducidos por burbujas | |
dc.type | Libro | |