dc.contributorElsevier
dc.creatorFlórez Pardo, Luz Marina
dc.creatorValencia Castillo, Natalia
dc.creatorVelez Duran, Yoly Mileidy
dc.creatorJurado Rosero, Javier Arturo
dc.creatorLozano Moreno, Jairo Alexander
dc.date.accessioned2023-05-17T20:14:50Z
dc.date.accessioned2023-06-06T14:16:10Z
dc.date.available2023-05-17T20:14:50Z
dc.date.available2023-06-06T14:16:10Z
dc.date.created2023-05-17T20:14:50Z
dc.date.issued2022-12
dc.identifier02552701
dc.identifierhttps://hdl.handle.net/10614/14756
dc.identifierUniversidad Autónoma de Occidente
dc.identifierRepositorio Educativo Digital UAO
dc.identifierhttps://red.uao.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6649224
dc.description.abstractThis article shows the results obtained by analyzing an emerging technology to produce bioethanol from coffee mucilage under sustainable development constraints. The investigation showed that the addition of an antibiotic is important to avoid contamination of the mucilage related to the presence of bacteria since these microorganisms can eat the sugars present in the biomass for their metabolism. On the other hand, for the conversion of cellulose and hemicellulose into simple reducing sugars present in coffee mucilage, the addition of the enzyme pectinase was necessary. The ANOVA analysis showed that the cellulase dose is the most significant factor in the hydrolysis process. The adequate doses of enzymes for the enzymatic hydrolysis process of coffee mucilage were obtained by the response surface method, finding an optimal value of 0,352 mL and 0,134 mL of cellulase and hemicellulase, respectively, per 100 mL of mucilage. From the logistics approach, the supply of coffee mucilage to a second-generation ethanol pilot plant with an installed capacity of 15.000 liters of mucilage per week was considered. Ideally, the pulping process must be carried out mechanically without water, ensuring a mucilage Brix content between 16 and 21, which would favor an ethanol yield close to 8% (v/v) in the must. A potential production of 4,137 liters of ethanol could be achieved with a total logistics cost of USD 305 if the available mucilage is collected. A potential reduction of 7,650 kg of carbon dioxide is possible if the ethanol produced is used to replace the same amount of gasoline in the trans portation industry
dc.languageeng
dc.publisherElsevier
dc.relation11
dc.relation1
dc.relation182
dc.relationFlórez Pardo, L.M., Valencia Castillo, N., Vélez Duran, Y.M., Jurado Rosero, J. A., Lozano Moreno, J.A. (2022). Comprehensive analysis of ethanol production from coffee mucilage under sustainability indicators. Chemical Engineering And Processing - Process Intensification. Elsevier, vol. 182, pp. 1-11
dc.relationChemical Engineering And Processing - Process Intensification
dc.relationN Rodríguez Valencia, Zambrano Franco, Los subproductos del caf´e: fuente de energía renovable, Avances T´ecnicos Cenicaf´e (2010). ISSN-0120-0178.
dc.relationA.C. Ramírez Gomez, ´ C.E. Oliveros Tascon, ´ J.R. Sanz Uribe, Manejo de Lixiviados y Aguas de Lavado en el Proceso De Beneficiohúmedo Del Caf´e, Cenicaf´e, 2015.
dc.relationB.Y. P´erez-Sarinana, ˜ S. Saldana-Trinidad, ˜ Bioethanol production from coffee mucilage, Energy Procedia (2014).
dc.relationB.M. Gouvea, C. Torres, A.S. Franca, L.S. Oliveira, E.S. Oliveira, Feasibility of ethanol production from coffee husks, Biotechnol. Lett. (2009), https://doi.org/ 10.1007/s10529-009-0023-4.
dc.relationMinisterio de Ambiente y Desarrollo Sostenible [Minambiente]. (2012). Decreto 2667 de 2012. Recuperado 18 de marzo de 2020, de https://www.suin-juriscol. gov.co/viewDocument.asp?id=1478824#ver_1478861.
dc.relationG.L. Miller, Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Chem. (1959), https://doi.org/10.1021/ac60147a030.
dc.relationL.M. Florez-Pardo, ´ J.E. Lopez-Gal ´ an, ´ Chemical analysis and characterization of biomass for biorefineries. Analytical Techniques and Methods for Biomass, 2016, https://doi.org/10.1007/978-3-319-41414-0_9.
dc.relationSalcedo, J., Lop´ez, J., & Florez, L. (2011). Evaluation of enzymes for the hydrolysis of waste (Leaves And Top Cane) from the harvest of sugar cane. 78, 182–190. Recuperado de https://www.scielo.org.co/pdf/dyna/v78n169/a21v78n169.pdf.
dc.relationD. Orrego, A.D. Zapata-Zapata, D. Kim, Optimization and scale-up of coffee mucilage fermentation for ethanol production, Energies (2018), https://doi.org/ 10.3390/en11040786.
dc.relationMinisterio de transporte [Mintransporte]. (2022). Sistema de Informacion ´ de Costos Eficientes para el Transporte Automotor de Carga SICE-TAC. Obteneid by https://plc.mintransporte.gov.co/Runtime/empresa/ctl/SiceTAC/mid/417.
dc.relationPuerta-Quintero, Gloria In´es. (2011). Origin and process factors on the quality and chemistry of coffee. In: Simposio Agroalimentario. Obtained by https://www. researchgate.net/publication/324166729.
dc.relationRodríguez Valencia Nelson, Sanz Uribe Juan Rodrigo, Oliveros Tascon ´ Carlos Eugenio, Ramírez Gomez ´ Cesar Augusto. (2015). Beneficio del caf´e en Colombia: practicas ´ y estrategias para el ahorro uso eficiente del agua y el control de la contaminacion ´ hídrica en el proceso de beneficio húmedo del caf´e. Cenicaf´e. ISBN 978-958-8490-17-5. 37 pgs.
dc.relationV.A. Bonilla-Hermosa, W.F. Duarte, R.F. Schwan, Utilization of coffee by-products obtained from semi-washed process for production of value-added compounds, Bioresour. Technol. (2014), https://doi.org/10.1016/j.biortech.2014.05.031.
dc.relationC. Montenegro, L. Melgarejo, Variacion ´ del contenido de azúcares totales y azúcares reductores en el musgo pleurozium schreberi (hylocomiaceae) bajo condiciones de d´eficit hídrico, En Acta biol. Colomb. (2012), 17Recuperado de, https://www.redalyc.org/pdf/3190/319028029010.pdf.
dc.relationXue Saisi, Uppugundla Nirmal, J. Bowman Michael, Cavalier David, Sousa Leonardo Da Costa, E. Dale Bruce, Balan Venkatesh, Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis, Biotechnol. Biofuels 8 (2015), https://doi.org/10.1186/ s13068-015-0378-9, 195.
dc.relationDuarte Gilvan C S. Moreira Leonora Rios, D. Jaramillo Paula Marcela, F. Filho Edivaldo Ximenes, Biomass-Derived Inhibitors of Holocellulases, Bioenerg. Res. 5 (2012) 768–777, https://doi.org/10.1007/s12155-012-9182-6.
dc.relationSalahuddin Sisbudi Harsonoa Soni, Fauzi Mukhammad, Sugeng Purwono Gatot, Soemarno Djoko, Second Generation Bioethanol from Arabica Coffee Waste Processing at Smallholder Plantation in Ijen Plateau Region of East Java, Procedia Chem 14 (2015) 408–413, https://doi.proxyuao.elogim.com/10.1016/j.proche.20 15.03.055.
dc.relationSierra, Y., Díaz, C., & Hern´ andez, J. (2015). Determinacion ´ del porcentaje de etanol producido por Saccharomyces Cerevisiaea partir de glicerina semipurificada. Recuperado de https://service.udes.edu.co/semanadivulgacion/s egundaSemana/memorias/ponencias/p12.pdf.
dc.relationFedebiocombustibles. (2018). Obtained from https://www.fedebiocombustibles. com/v3/estadistica-produccion-titulo-Alcohol_Carburante_(Etanol).htm, consultado 25 de febrero de 2018.
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos reservados - Elsevier, 2022
dc.titleComprehensive analysis of ethanol production from coffee mucilage under sustainability indicators
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución