dc.creatorCantillo Luna, Sergio
dc.creatorMoreno Chuquen, Ricardo
dc.creatorGonzález Longatt, Francisco
dc.creatorChamorro, Harold R.
dc.date.accessioned2023-05-04T18:48:06Z
dc.date.accessioned2023-06-06T14:09:08Z
dc.date.available2023-05-04T18:48:06Z
dc.date.available2023-06-06T14:09:08Z
dc.date.created2023-05-04T18:48:06Z
dc.date.issued2022
dc.identifier19961073
dc.identifierhttps://hdl.handle.net/10614/14696
dc.identifierUniversidad Autónoma de Occidente
dc.identifierRepositorio Educativo Digital UAO
dc.identifierhttps://red.uao.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6649163
dc.description.abstractThe increased use of distributed energy resources, especially electrical energy storage systems (EESS), has led to greater flexibility and complexity in power grids, which has led to new challenges in the operation of these systems, with particular emphasis on frequency regulation. To this end, the transmission system operator in Great Britain has designed a control scheme known as Enhanced Frequency Response (EFR) that is especially attractive for its implementation in EESS. This paper proposes a Type-2 fuzzy control system that enables the provision of EFR service from a battery energy storage system in order to improve the state-of-charge (SoC) management while providing EFR service from operating scenarios during working and off-duty days. The performance of the proposed controller is compared with a conventional FLC and PID controllers with similar features. The results showed that in all scenarios, but especially under large frequency deviations, the proposed controller presents a better SoC management in comparison without neglecting the EFR service provision
dc.languagespa
dc.publisherMDPI
dc.relation13
dc.relation7
dc.relation1
dc.relation15
dc.relationCantillo Luna, S., Moreno Chuquen, R., González Longatt. F., Chamorro, H. R. (2022). A Type-2 Fuzzy Controller to Enable the EFR Service from a Battery Energy Storage System. Energies, vol. 15 núm. 7, pp. 1-13
dc.relationEnergies
dc.relationAn, H.; Yang, J.; Yang, W.; Cheng, Y.; Peng, Y. An Improved Frequency Dead Zone with Feed-Forward Control for Hydropower Units: Performance Evaluation of Primary Frequency Control. Energies 2019, 12, 1497. [
dc.relationGreenwood, D.; Lim, K.; Patsios, C.; Lyons, P.; Lim, Y.; Taylor, P. Frequency response services designed for energy storage. Appl. Energy 2017, 203, 115–127.
dc.relationUlbig, A.; Borsche, T.S.; Andersson, G. Impact of low rotational inertia on power system stability and operation. IFAC Proc. Vol. 2014, 47, 7290–7297.
dc.relationNational Grid ESO. Enhanced Frequency Response. 2022. Available online: https://www.nationalgrid.com/uk/electricity/ balancingservices/frequency-response-services/enhanced-frequency-response-efr?overview (accessed on 13 January 2022).
dc.relationStroe, D.I.; Knap, V.; Swierczynski, M.; Stroe, A.I.; Teodorescu, R. Operation of a Grid-Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation: A Battery Lifetime Perspective. IEEE Trans. Ind. Appl. 2017, 53, 430–438
dc.relationSanchez, F.; Cayenne, J.; Gonzalez-Longatt, F.; Rueda, J.L. Controller to enable the enhanced frequency response services from a multi-electrical energy storage system. IET Gener. Transm. Distrib. 2019, 13, 258–265.
dc.relationPozo, D.; Contreras, J.; Sauma, E.E. Unit commitment with ideal and generic energy storage units. IEEE Trans. Power Syst. 2014, 29, 2974–2984
dc.relationGil-González, W.; Montoya, O.D.; Grisales-Noreña, L.F.; Cruz-Peragón, F.; Alcalá, G. Economic dispatch of renewable generators and BESS in DC microgrids using second-order cone optimization. Energies 2020, 13, 1703.
dc.relationSolano Martínez, J.; Mulot, J.; Harel, F.; Hissel, D.; Péra, M.C.; John, R.I.; Amiet, M. Experimental validation of a type-2 fuzzy logic controller for energy management in hybrid electrical vehicles. Eng. Appl. Artif. Intell. 2013, 26, 1772–1779. [
dc.relationGuo, N.; Fang, Y.; Tian, Z.; Cao, S. Research on SOC fuzzy weighted algorithm based on GA-BP neural network and ampere integral method. J. Eng. 2019, 2019, 576–580.
dc.relationLuo, X.; Wang, J.; Dooner, M.; Clarke, J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 2015, 137, 511–536.
dc.relationCooke, A.; Strickland, D.; Forkasiewicz, K. Energy storage for enhanced frequency response services. In Proceedings of the 2017 52nd International Universities Power Engineering Conference (UPEC), Heraklion, Greece, 28–31 August 2017; pp. 1–6.
dc.relationCao, X.; Zhao, N. A cooperative management strategy for battery energy storage system providing Enhanced Frequency Response. Energy Rep. 2022, 8, 120–128.
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos reservados - MDPI, 2022
dc.titleA type-2 fuzzy controller to enable the efr service from a battery energy storage system
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución