dc.creatorZalamea-León, Esteban
dc.creatorQuesada, Felipe
dc.date.accessioned2017-05-29 00:00:00
dc.date.accessioned2023-01-23T16:05:09Z
dc.date.accessioned2023-06-05T16:37:39Z
dc.date.available2017-05-29 00:00:00
dc.date.available2023-01-23T16:05:09Z
dc.date.available2023-06-05T16:37:39Z
dc.date.created2017-05-29 00:00:00
dc.date.created2023-01-23T16:05:09Z
dc.date.issued2017-05-29
dc.identifier10.14718/RevArq.2017.19.1.1018
dc.identifier2357-626X
dc.identifier1657-0308
dc.identifierhttps://hdl.handle.net/10983/28810
dc.identifierhttps://doi.org/10.14718/RevArq.2017.19.1.1018
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6647883
dc.description.abstractLa problemática energética mundial induce a la necesaria inclusión de medidas de eficiencia energética en edificaciones y ciudades. No obstante, ello no es suficiente si el objetivo es prescindir definitivamente de las energías fósiles, así como minimizar el impacto a la naturaleza como consecuencia de la obtención energética. Por ello, la inclusión de alternativas de autoabastecimiento en las propias edificaciones es fundamental. El sol es un recurso gigantesco, especialmente en zonas de latitudes medias y enfáticamente ecuatoriales. Este trabajo revisa antecedentes documentales de integración de energía solar activa desde la perspectiva de la arquitectura, recopilando antecedentes históricos, tecnologías disponibles en concordancia con las demandas, así como consideraciones tecnológicas que deberán tenerse en cuenta en las edificaciones. Se enuncian, además, los postulados recientes respecto a la integración arquitectónica como aspectos funcionales y morfológicos. A partir de este análisis se proponen niveles de integración arquitectónica. De las condiciones y posibilidades analizadas depende que, al ser considerados en el diseño, los colectores solares sean eficientes en producción y en concordancia con la arquitectura.
dc.description.abstractThe global energy problem has prompted the necessary inclusion of energy efficiency measures in buildings and communities. However, this is not enough if the goal is to definitely eliminate fossil fuels, as well as to minimize the impact of energy exploitation on the environment. Therefore, it is fundamental to include alternatives for energy auto-sufficiency in the buildings themselves. Solar irradiation is a huge resource, especially in mid-latitude and clearly equatorial areas. This research reviews historical antecedents for active solar energy integration from the perspective of architecture, through a compilation of historical data, technologies available in accordance with the demand, and technological aspects to be considered in buildings. It also presents recent findings regarding architectural integration as a functional and morphological aspect. Based on this analysis, different levels for the architectural integration of solar panels are proposed. It depends on the analysed conditions and possibilities that solar collectors are efficient in production and are in harmony with architecture.
dc.languagespa
dc.publisherUniversidad Católica de Colombia
dc.relationhttps://revistadearquitectura.ucatolica.edu.co/article/download/1018/1375
dc.relationhttps://revistadearquitectura.ucatolica.edu.co/article/download/1018/pdf%2007v2
dc.relationhttps://revistadearquitectura.ucatolica.edu.co/article/download/1018/1886
dc.relationhttps://revistadearquitectura.ucatolica.edu.co/article/download/1018/1943
dc.relationhttps://revistadearquitectura.ucatolica.edu.co/article/download/1018/2766
dc.relationNúm. 1 , Año 2017 : Enero - junio
dc.relation69
dc.relation1
dc.relation56
dc.relation19
dc.relationRevista de Arquitectura (Bogotá)
dc.relationAgrawal, B. y Tiwari, G. N. (2010). Optimizing the energy and exergy of building integrated photovoltaic thermal (BIPVT) systems under cold climatic conditions. Appl. Energy, 87, 417-426. doi:10.1016/j.apenergy.2009.06.011
dc.relationAlamy (2015). Impact 2000 House. Recuperado de http://www.alamy.com/stock-photo-pv -house-the-boston-edison-impact-2000-home-incorporated-a-4-kwp-utility-84599920.html
dc.relationAstea, N., Del Peroa, C. y Leonfortea, F. (2012). Optimization of solar thermal fraction in PVT systems. Energy Procedia, 30, 8-18. doi:10.1016/j.egypro.2012.11.003
dc.relationAthienitis, A. K. (2007). Design of a solar home with bipv-thermal system and ground source heat pump. Canadian Solar Buildings Conference, Calgary.
dc.relationAthienitis, A. K., Bambara, J., ONeill, B. y Faille, J. (2011). A prototype photovoltaic/thermal system integrated with transpired collector. Sol. Energy 117, 403-410. doi:10.1016/j.solener.2010.10.008
dc.relationBesser, D., Rodrigues, L. y Bobadilla, A. (2012). New Chilean Building Regulations and Energy Efficient Housing in Disaster Zones The thermal performance of prefabricated timber-frame dwellings. PLEA 2012 - 28th Conf. Oppor. Limits Needs Towar. an Environ. responsible Archit.
dc.relationBolinger, M. y Wiser, R. (2002). Case studies of state support for renewable energy. Estados Unidos: Berkeley Lab and the Clean Energy Group CASE.
dc.relationCDT (2007). Sistemas Solares Térmicos. Santiago de Chile: Corporación de Desarrollo Tecnológico.
dc.relationChow, T. T. (2010). A review on photovoltaic / thermal hybrid solar technology. Appl. Energy, 87, 365-379. doi:10.1016/j.apenergy.2009. 06.037
dc.relationCinnamon, B. (2016). When Can I Get Solar Shingles? San Diego: Cinnamonsolar.
dc.relationDe Little, A. (1995). Building- Integrated Photovoltaics and US Market. Massachusets: U.S. Department of Energy.
dc.relationDisch, R. (2010). PlusEnergy - The Manifesto. Recuperado de http://www.rolfdisch.de/files/pdf/12_PLUSENERGIE_EIN_MANIFEST_6_englisch.pdf.
dc.relationDisch, R. (1994). Rotatable Solar House HELIO-TROP ®. Freiburg: Rolf Disch SolarArchitektur .
dc.relationEREC (2010). RE-thinking 2050: a 100% renewable energy vision for the European Union. Bruselas: EREC.
dc.relationFraunhofer, Institute for Solar Energy (2016). Photovoltaics report. Freiburg: Fraunhofer Institute for Solar Energy Systems, ISE Gajbert, H. (2008). Solar thermal energy systems for building integration. Lund: Lund University.
dc.relationGook-hwan, H. y Eximbank, K. (2013). Smart Grid Studies in Ecuador. Sejong: Knoeledge Sharing Program Korea
dc.relationGuillén, V., Quesada, F., López, M., Orellana, D., Serrano, A., Mena, V.G. et al. (2014). Eficiencia energética en edificaciones residenciales. ESTOA, 63-73.
dc.relationGupta, A., Cemesova, A., Hopfe, C. J., Rezgui, Y. y Sweet, T., (2014). A conceptual framework to support solar PV simulation using an open-BIM data exchange standard. Autom. Constr. 37, 166-181. doi:10.1016/j.autcon.2013.10.005
dc.relationHaberl, J. S. y Cho, S. (2014). Energy Systems. Work. Gr. III - Mitig. Clim. Chang., 139.
dc.relationHachem, C. (2012). Investigation of Design Parameters for Increased Solar Potential of Dwellings and Neighborhoods. Montreal: Concordia University.
dc.relationHachem, C., Athienitis, A. y Fazio, P. (2011). Investigation of solar potential of housing units in different neighborhood designs. Energy Build, 43, 2262-2273. doi:10.1016/j.enbuild.2011.05.008
dc.relationIEA (2009). Cities, Towns & Renewable Energy Cities, Towns. Paris: IEA/OECD.
dc.relationIEA y SHC (2015). New Generation Solar Cooling & Heating Systems. Recuperado de URL http://task53.iea-shc.org.
dc.relationIEA y SHC (1977). IEA Solar Heating & Cooling Programme. Recuperado de http://www.iea-shc.org/tasks-completed.
dc.relationIEA y SHC (2014). Innovative solar products for building integration Recuperado de http://www.solarintegrationsolutions.org
dc.relationIEA y SHC Task 26 (2000). CombiSystem Overview 2000. Recuperado de http://www.aee-intec.at/0uploads/dateien551.pdf
dc.relationIEA y SHC Task 41 (2012a). Solar energy systems in architecture, integration criteria and guidelines. Recuperado de http://task41.iea-shc.org/data/sites/1/publications/T41DA2-Solar-Energy-Systems-in-Architecture-28March2013.pdf
dc.relationIEA y SHC Task 41 (2012b). Solar design of buildings for architects: Review of solar design tools. Recuperado de http://task41.iea-shc.org/data/sites/1/publications/T41DA2-Solar-Energy-Systems-in-Architecture-28March2013.pdf
dc.relationIEA Solar Heating y Cooling Program (2007). Compilation and analyze of interviews DA 1-2 Preliminary Outcome of PV / T market survey interviews. Hãrnõsand: IEA Solar Heating and cooling Program.
dc.relationIEA Solar Heating y Cooling Program Task 16 (1995). Photovoltaic in Buildings. Recuperado de http://archive.iea-shc.org/task16/index.html Kaan, H. y Reijenga, T. (2004). Photovoltaics in an architectural context. Prog. Photovoltaics Res. Appl., 12, 395-408. doi:10.1002/pip.554
dc.relationKalogirou, S. A. (2004). Solar thermal collectors and applications. Prog. Energy Combust. Sci., 30, 231-295. doi:10.1016/j.pecs.2004.02.001 Lamnatou, C., Mondol, J. D., Chemisas-bipv-onyxsolar.html
dc.relationPerlin, J. (2013). Let It Shine: The 6000 Year Story of Solar Energy. Recuperado de http://john-perlin.com/let-it-shine.html
dc.relationRickerson, W. e IEA (2014). Residential prosumers - drivers and policy options. Re-prosumers, 1-123.
dc.relationShade Optisol y SUPSI Competence Center (2011). Detail sheet Solar shadings. Cannobio: Swiss BiPV Competence Centre.
dc.relationSolar Design Associates (2015). Carlisle House. Recuperado de http://www.solardesign.com/SDA_Today/carlisle-house/
dc.relationSolarwall (2015). PV/Thermal; Hybrid Solar Heating + Electricity. Recuperado de http://solarwall.com/en/products/pvthermal.php
dc.relationSolimpeks (2010). Volther Hybrid PV-T Panels. Konya: Solimpeks Solar Energy Corporation.
dc.relationSUPSI Competence Center (2008). Paolo VI Audience Chamber. Canobbio: Swiss BiPV Competence Centre.
dc.relationSuter, J.-M., Letz, T. y Weiss, W. (2003). Solar Combisystems - Overview. Gleisdorf: AEE INTEC.
dc.relationSwiss Megasol y SUPSI Competence Center (2011). Façade elements Megasol Swiss Premium Mono. Canobbio: Swiss BiPV Competence Centre.
dc.relationTerra Ecología Práctica (2007). Guía práctica de una instalación de energía solar térmica. Recuperado de http://www.terra.org/categorias/articulos/guia-practica-de-una-instalacion-de-energia-solar-termica
dc.relationTesla Inc. (2017). PowerWall Tesla Home Battery. Recuperado de http://www.teslamotors.com/powerwall
dc.relationVázquez Espí, M. (1999). Una brevísima historia de la arquitectura solar. Por una Arquitectura y un Urbanismo Contemporáneos, 1-31.
dc.relationWall, M., Munari Probst, M. C., Roecker, C., Dubois, M. C., Horvat, M., Jørgensen, O. B. y Kappel, K. (2012). Achieving solar energy in architecture - IEA SHC Task 41. Energy Procedia, 30, 1250-1260. doi:10.1016/j.egypro.2012.11.138
dc.relationWegertseder, P., Lund, P., Mikkola, J. y García Alvarado, R. (2016). Combining solar resource mapping and energy system integration methods for realistic valuation of urban solar energy potential. Sol. Energy, 135, 325-336. doi:10.1016/j.solener.2016.05.061
dc.relationZalamea León, E. y García Alvarado, R. (2014). Integrated architectural design of active solar thermal collector at dwelling´s roofs. Arquitectura y Urbanismo, XXXV, 1815-5898.
dc.relationZhu, H., Wei, J., Wang, K., Wu, D., Al-Hasan, A. Y., Altermatt, P. P. et al. (2011). The history of solar. Sol. Energy Mater. Sol. Cells, 93, 1461-1470. doi:10.1016/j.solmat.2009.04.006
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsEsteban Felipe Zalamea-León - 2017
dc.sourcehttps://revistadearquitectura.ucatolica.edu.co/article/view/1018
dc.subjectSolar collector
dc.subjectSolar cell
dc.subjectSolar heating
dc.subjectSolar building
dc.subjectBioclimatic architecture
dc.subjectArquitectura bioclimática
dc.subjectColector solar
dc.subjectCalefacción solar
dc.subjectCélula solar
dc.subjectEdificio solar
dc.subjectArquitetura bioclimática
dc.subjectCalefação solar
dc.subjectCélula solar
dc.subjectColetor solar
dc.subjectEdifício solar
dc.titleCriterios de integración de energía solar activa en arquitectura : potencial tecnológico y consideraciones proyectuales.
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución