dc.contributorHincapié Isaza, Ricardo Alberto
dc.creatorLópez Aguirre , Alejandro
dc.date2023-03-06T22:09:50Z
dc.date2023-03-06T22:09:50Z
dc.date2023
dc.date.accessioned2023-06-05T15:19:50Z
dc.date.available2023-06-05T15:19:50Z
dc.identifierUniversidad Tecnológica de Pereira
dc.identifierRepositorio Institucional Universidad Tecnológica de Pereira
dc.identifierhttps://repositorio.utp.edu.co/home
dc.identifierhttps://hdl.handle.net/11059/14585
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6645836
dc.descriptionEn este proyecto de grado se presenta una metodología que permite la penetración de fuentes renovables de energía solar y eólica a una red de distribución de corriente continua, considerando la incertidumbre de la radicación solar, la velocidad del viento, el valor de la demanda y el precio de la energía. El problema es formulado con un modelo de optimización multiobjetivo que considera en conflicto los costos del proyecto y las emisiones de CO2. Para solucionar el modelo se emplea un algoritmo evolutivo NSGA-II. Con el fin de verificar la eficiencia de la metodología propuesta se emplea un sistema de prueba de 70 nodos, encontrando un frente de Pareto que permite determinar un individuo de un conjunto de soluciones ´optimas de acuerdo a las necesidades particulares de cada operador de red.
dc.descriptionThis project presents a methodology that allows for the integration of renewable energy sources, such as solar and wind power, into a direct current distribution network, while considering the uncertainty of solar radiation, wind speed, demand value, and energy price. The problem is formulated using a multi-objective optimization model that considers the costs of the project and CO2 emissions in conflict. To solve the model, an NSGA-II evolutionary algorithm is employed. In order to verify the efficiency of the proposed methodology, a 70-node test system is used, resulting in a Pareto front that allows for the determination of an individual optimal solution from a set of optimal solutions according to the particular needs of each network operator.
dc.descriptionMaestría
dc.descriptionMagíster en Ingeniería Eléctrica
dc.description´ Indice general ´Indice general I ´Indice de figuras IV ´Indice de tablas V 1. Introducci´on 5 1.1. Estado del arte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.1. Conexi´on de GDs en redes DC . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.2. Modelado de incertidumbre en redes en DC . . . . . . . . . . . . . . . . 8 1.1.3. Comentarios finales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2. Aportes del proyecto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3. Organizaci´on del documento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. Descripci´on y formulaci´on matem´atica del problema 12 2.1. Descripci´on del problema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2. Inclusi´on de la incertidumbre en el modelo matem´atico . . . . . . . . . . . . . . 14 2.3. Modelado de las emisiones de CO2 . . . . . . . . . . . . . . . . . . . . . . . . . 15 i 2.4. Modelo matem´atico del problema propuesto . . . . . . . . . . . . . . . . . . . . 15 3. Metodolog´ıa propuesta 19 3.1. Modelado de la incertidumbre . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.1. T´ecnicas de agrupamiento de datos . . . . . . . . . . . . . . . . . . . . . 20 3.1.2. Generaci´on y reducci´on de los escenarios estoc´asticos . . . . . . . . . . . 22 3.2. Conceptos de optimizaci´on multiobjetivo . . . . . . . . . . . . . . . . . . . . . . 24 3.2.1. Concepto de dominancia . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.2. Optimalidad de Pareto . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3. Algoritmo NSGA-II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.1. Codificaci´on del problema . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.2. Poblaci´on inicial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.3. Criterio de parada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.4. Evaluaci´on de las configuraciones . . . . . . . . . . . . . . . . . . . . . . 30 3.3.5. Selecci´on de una configuraci´on del frente . . . . . . . . . . . . . . . . . . 31 3.4. Descripci´on de la metodolog´ıa . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4. Aplicaci´on y resultados 34 4.1. Sistema de prueba . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2. Resultados obtenidos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.3. Verificaci´on de las soluciones del frente de Pareto . . . . . . . . . . . . . . . . . 40 5. Conclusiones y Recomendaciones 42 5.1. Conclusiones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ii 5.2. Recomendaciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Bibliograf´ıa 44
dc.format61 Páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Tecnológica de Pereira
dc.publisherFacultad de Ingenierías
dc.publisherPereira
dc.publisherMaestría en Ingeniería Eléctrica
dc.relation[1] V. Nasirian, F. L. Lewis, and A. Davoudi, “Distributed optimal dispatch for dc distribution networks,” in 2015 IEEE First International Conference on DC Microgrids (ICDCM), 2015, pp. 97–101.
dc.relation[2] Y. Yang, X. Wang, J. Luo, J. Duan, Y. Gao, H. Li, and X. Xiao, “Multi-objective coordinated planning of distributed generation and ac/dc hybrid distribution networks based on a multi-scenario technique considering timing characteristics,” Energies, vol. 10, no. 12, 2017. [Online]. Available: https://www.mdpi.com/1996-1073/10/12/2137
dc.relation[3] A. M. Sallam, H. M. Ahmed, and M. Salama, “A planning framework for ac-dc bilayer microgrids,” Electric Power Systems Research, vol. 188, p. 106524, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S037877962030328X
dc.relation[4] O. D. Montoya, L. F. Grisales-Nore˜na, W. Gil-Gonz´alez, G. Alcal´a, and Q. Hernandez-Escobedo, “Optimal location and sizing of pv sources in dc networks for minimizing greenhouse emissions in diesel generators,” Symmetry, vol. 12, no. 2, 2020. [Online]. Available: https://www.mdpi.com/2073-8994/12/2/322
dc.relation[5] V. Vai, M.-C. Alvarez-Herault, B. Raison, and L. Bun, “Optimal low-voltage distribution topology with integration of pv and storage for rural electrification in developing countries: A case study of cambodia,” Journal of Modern Power Systems and Clean Energy, vol. 8, no. 3, pp. 531–539, 2020.
dc.relation[6] M. F. Shaaban, A. Saber, M. Ammar, and H. Zeineldin, “A multi-objective planning approach for optimal dg allocation for droop based microgrids,” Electric 44 Power Systems Research, vol. 200, p. 107474, 2021. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S0378779621004557
dc.relation[7] H. Ritchie, M. Roser, and P. Rosado, “Co2 and greenhouse gas emissions,” Tech. Rep., 2020.
dc.relation[8] T. D. de Lima, A. Tabares, N. Ba˜nol Arias, and J. F. Franco, “Investment generation costs vs co2 emissions in the distribution system expansion planning: A multi-objective stochastic programming approach,” International Journal of Electrical Power Energy Systems, vol. 131, p. 106925, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0142061521001654
dc.relation[9] V. Azbe and R. Mihalic, “Distributed generation from renewable sources in an isolated dc network,” Renewable Energy, vol. 31, no. 14, pp. 2370–2384, 2006. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0960148106000206
dc.relation[10] O. D. Montoya, V. M. Garrid, L. F. Grisales-Nore˜na, W. Gil-Gonz´alez, A. Garces, and C. A. Ramos-Paja, “Optimal location of dgs in dc power grids using a minlp model implemented in gams,” in 2018 IEEE 9th Power, Instrumentation and Measurement Meeting (EPIM), 2018, pp. 1–5.
dc.relation[11] O. D. Montoya, W. Gil-Gonz´alez, and L. Grisales-Nore˜na, “Relaxed convex model for optimal location and sizing of dgs in dc grids using sequential quadratic programming and random hyperplane approaches,” International Journal of Electrical Power Energy Systems, vol. 115, p. 105442, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S014206151930242X
dc.relation[12] L. F. Grisales-Nore˜na, O. D. Montoya, C. A. Ramos-Paja, Q. Hernandez-Escobedo, and A. J. Perea-Moreno, “Optimal location and sizing of distributed generators in dc networks using a hybrid method based on parallel pbil and pso,” Electronics, vol. 9, 2020. [Online]. Available: https://doi.org/10.3390/electronics9111808
dc.relation[13] O. Montoya and W. Gil-Gonz´alez, “A miqp model for optimal location and sizing of dispatchable dgs in dc networks,” Energy Syst, vol. 12, 2021. [Online]. Available: https://doi.org/10.1007/s12667-020-00403-x
dc.relation[14] F. Molina-Martin, O. D. Montoya, L. F. Grisales-Nore˜na, and J. C. Hern´andez, “A mixed-integer conic formulation for optimal placement and dimensioning of dgs in dc distribution networks,” Electronics, vol. 10, 2021. [Online]. Available: https://doi.org/10.3390/electronics10020176
dc.relation[15] R. Far´ıas Miranda, N. M. Salgado-Herrera, O. Rodr´ıguez-Hern´andez, J. R. Rodr´ıguez-Rodr´ıguez, M. Robles, D. Ruiz-Robles, and V. Venegas-Rebollar, “Distributed generation in low-voltage dc systems by wind energy in the baja california peninsula, mexico,” Energy, vol. 242, 2022. [Online]. Available: https://doi.org/10.1016/j.energy. 2021.122530.
dc.relation[16] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-dominated sorting genetic algorithm for multiobjective optimization: Nsga-ii,” Proceedings of the Parallel Problem Solving from Nature VI, 2000.
dc.relation[17] L. Lopez, R. Hincapi´e, and R. Gallego, “Planeamiento multiobjetivo de sistemas de distribuci´on usando un algoritmo evolutivo nsga-ii,” Revista EIA, pp. 141–151, 12 2011.
dc.relation[18] R. D. Mohammedi, A. Hellal, S. Arif, and M. Mosbah, “Optimal dg placement and sizing in radial distribution systems using nsga-ii for power loss minimization and voltage stability enhancement,” International Review of Electrical Engineering, vol. 8, pp. 1806–1814, 12 2013.
dc.relation[19] B.-Y. Jiang, K.-S. Song, S. Cheng, T.-Y. Qin, and Q. Zou, “Multi-objective optimal placement of distribution generation with special requirements for power quality and power supply,” in Proceedings of the 33rd Chinese Control Conference, 2014, pp. 7521–7526.
dc.relation[20] A. Mej´ıa, R. Hincapi´e, and R. Gallego, “Planeaci´on ´optima de sistemas de distribuci´on considerando m´ultiples objetivos: costo de inversi´on, confiabilidad y p´erdidas t´ecnicas,” Tecnura, vol. 19, p. 106–118, 01 2015.
dc.relation[21] “Acuerdo de par´ıs,” Organizaci´on de las Naciones Unidas (ONU), Tech. Rep., 2015.
dc.relation[22] “Ley 1715,” El Congreso de Colombia, Tech. Rep., 2014.
dc.relation[23] “Resoluci´on creg 030 de 2018,” Comisi´on de Regulaci´on de Energ´ıa y Gas (CREG), Tech. Rep., 2018.
dc.relation[24] “How wind energy can help us breathe easier,” Office of Energy Efficiency Renewable Energy (EERE), Tech. Rep., 2022.
dc.relation[25] “How much emissions does a solar power system prevent?” Solar Bay, Tech. Rep., 2020.
dc.relation[26] R. Resch, “La promesa de la energ´ıa solar: Estrategia energ´etica para reducir las emisiones de carbono en el siglo xxi,” Organizaci´on de las Naciones Unidas (ONU), Tech. Rep., 2022.
dc.relation[27] C. Aggarwal, Data Clustering: Algorithms and Applications, 1st ed., C. Press, Ed., 2014.
dc.relation[28] A. Shapiro, D. Dentcheva, and A. Ruszczynski, Lectures on stochastic programming : modeling and theory, 1st ed., P. U. Press, Ed., 2009.
dc.relation[29] L. Baringo and A. Conejo, “Correlated wind-power production and electric load scenarios for investment decisions,” Applied Energy, vol. 101, pp. 475–482, jan 2013.
dc.relation[30] J. M. Home-Ortiz, M. Pourakbari-Kasmaei, M. Lehtonen, and J. R. S. Mantovani, “Optimal location-allocation of storage devices and renewable-based DG in distribution systems,” Electric Power Systems Research, vol. 172, pp. 11–21, jul 2019.
dc.relation[31] A. Valencia D., R. A. Hincapie I., and R. A. Gallego R., “Expansion planning of joint medium- and low-voltage three-phase distribution networks considering the optimal integration of distributed energy resources,” Energy Reports, vol. 9, pp. 1183–1200, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/S2352484722026646
dc.relation[32] XM, “Sinergox,” Accessed: 2022-12-01. [Online]. Available: https://sinergox.xm.com.co/ Paginas/Home.aspx
dc.relation[33] S. Pfenninger and I. Staffell, “Renewables.ninja,” 2016, Accessed: 2022-12-01. [Online]. Available: https://www.renewables.ninja/
dc.relation[34] R. Gallego, A. Escobar, and E. Toro, T´ecnicas metaheur´ısticas de optimizaci´on, 2nd ed., U. T. de Pereira, Ed., 2008.
dc.relation[35] H. Kung, F. Luccio, and F. Preparata, “On finding the maxima of a set of vectors,” Journal of the Assooanon for Computing Machinery, vol. 25, no. 4, 1975.
dc.relation[36] R. D. Zimmerman and C. E. Murillo-Sanchez, “Matpower [software],” 2020. [Online]. Available: https://www.https://matpower.org/
dc.relation[37] V. Vahidinasab, “Optimal distributed energy resources planning in a competitive electricity market: Multiobjective optimization and probabilistic design,” Renewable Energy, vol. 66, pp. 354–363, 2014.
dc.relation[38] L. Gallego Pareja, J. L´opez-Lezama, and O. G´omez-Carmona, “Optimal feeder reconfiguration and placement of voltage regulators in electrical distribution networks using a linear mathematical model,” Sustainability, vol. 15, 2023. [Online]. Available: https://doi.org/10.3390/su15010854
dc.rightsManifiesto (Manifestamos) en este documento la voluntad de autorizar a la Biblioteca Jorge Roa Martínez de la Universidad Tecnológica de Pereira la publicación en el Repositorio institucional (http://biblioteca.utp.edu.co), la versión electrónica de la OBRA titulada: ________________________________________________________________________________________________ ________________________________________________________________________________________________ ________________________________________________________________________________________________ La Universidad Tecnológica de Pereira, entidad académica sin ánimo de lucro, queda por lo tanto facultada para ejercer plenamente la autorización anteriormente descrita en su actividad ordinaria de investigación, docencia y publicación. La autorización otorgada se ajusta a lo que establece la Ley 23 de 1982. Con todo, en mi (nuestra) condición de autor (es) me (nos) reservo (reservamos) los derechos morales de la OBRA antes citada con arreglo al artículo 30 de
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject620 - Ingeniería y operaciones afines
dc.subjectDistribución de energía electrica
dc.subjectCorriente continua
dc.subjectEnergía eolica
dc.subjectAlgoritmo NSGA-II
dc.subjectIncertidumbre
dc.subjectRedes de distribución en DC
dc.titleUbicación y dimensionamiento óptimo de GD renovables en redes de distribución en DC usando un enfoque estocástico multiobjetivo
dc.typeTrabajo de grado - Maestría
dc.typehttp://purl.org/coar/resource_type/c_bdcc
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.typeText
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typeinfo:eu-repo/semantics/acceptedVersion


Este ítem pertenece a la siguiente institución