dc.contributor | Garcés Ruiz, Alejandro | |
dc.creator | Fajardo Latorre, Maria Valeria | |
dc.date | 2023-03-13T15:19:13Z | |
dc.date | 2023-03-13T15:19:13Z | |
dc.date | 2022 | |
dc.date.accessioned | 2023-06-05T15:19:15Z | |
dc.date.available | 2023-06-05T15:19:15Z | |
dc.identifier | Universidad Tecnológica de Pereira | |
dc.identifier | Repositorio Institucional Universidad Tecnológica de Pereira | |
dc.identifier | https://repositorio.utp.edu.co/home | |
dc.identifier | https://hdl.handle.net/11059/14603 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6645818 | |
dc.description | Active distribution networks present high penetration of distributed resources that require real-time monitoring. These networks are equipped with a supervision, control, and data acquisition (SCADA) system, which integrates information supplied by advanced measurement equipment. This thesis presents a state estimation model as an integral part of the SCADA system. Nevertheless, the state estimator is non-convex. Therefore, the application of conical approximations such as second-order cone and semidefinite programming proposes to guarantee a global optimum and uniqueness of the solution. The model includes direct angle measurement through meters and micro-phasor measurement units micro-pmu.The model evaluates different test systems in the international scientific literature. These quantified by stochastic metrics the difference between the estimated and actual value as root mean square error or the confidence level used to check for incorrect data and system reliability. In addition, the behavior of the micro-pmu investigates with total voltage error. These results show a high efficiency guaranteeing a global optimum and precision when using cvxPy in Python. | |
dc.description | Las redes de distribución activas presentan alta penetración de recursos distribuidos que requieren supervisión en tiempo real. Estas redes están equipadas con un sistema supervisión, control y adquisición de datos (SCADA), que integra información suministrada por los equipos de medición avanzada.
Este trabajo presenta un modelo de estimación de estado como parte integral del sistema SCADA. No obstante, el estimador de estado es no convexo. Por ende, se propone la aplicación de aproximaciones cónicas como Second order cone y Semidefinite programming para garantizar un óptimo global y unicidad de la solución. El modelo incluye medición directa del ángulo gracias al uso de medidores inteligentes
y micro unidades de medición fasorial micro-pmu. El modelo es evaluado en diferentes sistemas de prueba de la literatura científica internacional. Estos son cuantificados por métricas estocásticas que entregan la
diferencia entre el valor estimado y el real como root mean square error o el nivel de confianza empleado para verificar datos incorrectos y la confiabilidad del sistema. Además, el comportamiento de las micro-pmu se indaga con el total voltaje error. Estos resultados muestran una alta eficiencia garantizando un óptimo global y precisión al emplear cvxPy en Python. | |
dc.description | Maestría | |
dc.description | Magíster en Ingeniería Eléctrica | |
dc.description | Contents
1 Introduction 10
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Active distribution networks (ADNs) . . . . . . . . . . . . . . . . 12
1.3 The state estimation problem . . . . . . . . . . . . . . . . . . . . 14
1.4 Convex optimization-based Methods . . . . . . . . . . . . . . . . 15
1.5 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2 The state estimation problem in ADNs 19
2.1 Overview of the classic state estimation problem . . . . . . . . . 19
2.2 The state estimation as an optimization problem . . . . . . . . . 22
2.3 Available measurements in ADNs . . . . . . . . . . . . . . . . . . 24
2.4 SCADA systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Phasor measurement units . . . . . . . . . . . . . . . . . . . . . . 27
2.6 Challenges in power distribution networks . . . . . . . . . . . . . 29
3 Convex model for the state estimation of ADNs 32
3.1 Convex optimization for state estimation . . . . . . . . . . . . . . 32
3.2 Convex cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Second-order cone programming . . . . . . . . . . . . . . . . . . 37
3.4 Application of SOC to the state estimation . . . . . . . . . . . . 38
3.5 Cone of Semidefinite matrices . . . . . . . . . . . . . . . . . . . . 40
6
Maria Valeria Fajardo Latorre Maria Valeria Fajardo Latorre
3.6 Application of SDP to the state estimation problem . . . . . . . 41
3.7 Stochastic metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.7.1 Total vector error . . . . . . . . . . . . . . . . . . . . . . . 42
3.7.2 Root mean square error . . . . . . . . . . . . . . . . . . . 43
3.7.3 Confidence level criterion . . . . . . . . . . . . . . . . . . 43
4 Results 45
4.1 Test systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Results for state estimation in different IEEE . . . . . . . . . . . 46
4.4 Confidence level criterion . . . . . . . . . . . . . . . . . . . . . . 54
4.5 Criterion of the voltage phasors . . . . . . . . . . . . . . . . . . . 55
4.6 Root-mean-square error . . . . . . . . . . . . . . . . . . . . . . . 56
4.7 Remarks in regard with the existing literature . . . . . . . . . . . 58
5 Conclusions 61 | |
dc.format | 91 Páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad Tecnológica de Pereira | |
dc.publisher | Facultad de Ingenierías | |
dc.publisher | Pereira | |
dc.publisher | Maestría en Ingeniería Eléctrica | |
dc.relation | [Abdolkhalig and Zivanovic, 2013] Abdolkhalig, A. and Zivanovic, R. (2013). Evaluation of iec 61850-9-2 samples loss on total vector error of an estimated phasor. In 2013 IEEE Student Conference on Research and Developement, pages 269–274. | |
dc.relation | [Abur and Gomez-Exposito, 2004] Abur, A. and Gomez-Exposito, A. (2004). Power System State Estimation: Theory and Implementation, volume 24. CRC Press. | |
dc.relation | [Adjerid and Maouche, 2020] Adjerid, H. and Maouche, A. R. (2020). Multi-agent system-based decentralized state estimation method for active distribution networks. Computers and Electrical Engineering, 86:106652. | |
dc.relation | [Aghamolki et al., 2018] Aghamolki, H. G., Miao, Z., and Fan, L. (2018). Socp convex relaxation-based simultaneous state estimation and bad data identification. | |
dc.relation | [Ahmad, 2013] Ahmad, M. (2013). Power System State Estimation. ARTECHHOUSE. | |
dc.relation | Al-Mohammed and Elamin, 2003] Al-Mohammed, A. and Elamin, I. (2003). Capacitor placement in distribution systems using artificial intelligent techniques. In 2003 IEEE Bologna Power Tech Conference Proceedings, page 7 pp. Vol.4. | |
dc.relation | [Alsac et al., 1998] Alsac, O., Vempati, N., Stott, B., and Monticelli, A. (1998). Generalized state estimation. IEEE Transactions on Power Systems, 13(3):1069–1075. | |
dc.relation | Alvarez-Bustos et al., 2021] Alvarez-Bustos, A., Kazemtabrizi, B., Shahbazi, M., and Acha-Daza, E. (2021). Universal branch model for the solution of optimal power flows in hybrid ac/dc grids. International Journal of Electrical Power y Energy Systems, 126:106543. | |
dc.relation | Arghandeh, 2015] Arghandeh, R. (2015). Micro-synchrophasors for power distribution monitoring, a technology review. Dept. of Electrical and Computer Engineering, pages 1–18. | |
dc.relation | Aster et al., 2019] Aster, R. C., Borchers, B., and Thurber, C. H. (2019). Chapter eleven - bayesian methods. In Aster, R. C., Borchers, B., and Thurber, C. H., editors, Parameter Estimation and Inverse Problems (Third Edition), pages 279–306. Elsevier, third edition edition | |
dc.relation | [Bedoya et al., 2019a] Bedoya, J. C., Abdelhadi, A., Liu, C.-C., and Dubey, A. (2019a). A qcqp and sdp formulation of the optimal power flow including renewable energy resources. In 2019 International Symposium on Systems Engineering (ISSE), pages 1–8. | |
dc.relation | [Bedoya et al., 2019b] Bedoya, J. C., Liu, C.-C., Krishnamoorthy, G., and Dubey, A. (2019b). Bilateral electricity market in a distribution system environment. IEEE Transactions on Smart Grid, 10(6):6701–6713. | |
dc.relation | [Bedoya et al., 2021] Bedoya, J. C., Ostadijafari, M., Liu, C.-C., and Dubey, A. (2021). Decentralized transactive energy for flexible resources in distribution systems. IEEE Transactions on Sustainable Energy, 12(2):1009–1019. | |
dc.relation | [Bentarzi et al., 2018a] Bentarzi, H., Tsebia, M., and Abdelmoumene, A. (2018a). Pmu based scada enhancement in smart power grid. In 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018), pages 1–6. | |
dc.relation | [Bentarzi et al., 2018b] Bentarzi, H., Tsebia, M., and Abdelmoumene, A. (2018b). Pmu based scada enhancement in smart power grid. In 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018), pages 1–6. | |
dc.relation | [Bertsekas, 2009] Bertsekas, D. (2009). Convex Optimization Theory. Athena Scientific optimization and computation series. Athena Scientific. | |
dc.relation | [Borwein and Lewis, 2013] Borwein, J. and Lewis, A. (2013). Convex Analysis and Nonlinear Optimization: Theory and Examples. CMS Books in Mathematics. Springer New York. | |
dc.relation | [Boyd and Vandenberghe, 2004] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization, page 730. Stanford University. | |
dc.relation | [Broyden, 1973] Broyden, C. (1973). Quasi-newton, or modification methods. In Byrne, G. D. and Hall, C. A., editors, Numerical Solution of Systems of Nonlinear Algebraic Equations, pages 241–280. Academic Press | |
dc.relation | [C37.118.2, 2011] C37.118.2, I. S. (2011). Ieee standard for synchrophasor data transfer for power systems. IEEE Std C37.118.2-2011 (Revision of IEEE Std C37.118-2005), pages 1–53. | |
dc.relation | [Chen et al., 2021] Chen, Y., Yao, Y., and Zhang, Y. (2021). A robust state estimation method based on socp for integrated electricity-heat system. IEEE Transactions on Smart Grid, 12(1):810–820. | |
dc.relation | [Chowdhury and Kamalasadan, 2020] Chowdhury, M. M.-U.-T. and Kamalasadan, S. (2020). An angle included optimal power flow (opf) model for power distribution network using second order cone programming (socp). In 2020 IEEE Industry Applications Society Annual Meeting, pages 1–7. | |
dc.relation | Christensen et al., 1991] Christensen, G., Soliman, S., and Mohamed, M. (1991). LEONDES, C., editor, Analysis and Control System Techniques for Electric Power Systems, Part 4 of 4, volume 44 of Control and Dynamic Systems, pages 345–487. Academic Press. | |
dc.relation | [Cichosz, 2015] Cichosz, P. (2015). Linear regression, pages 235–260. Wiley | |
dc.relation | [D’Antona and Davoudi, 2012] D’Antona, G. and Davoudi, M. (2012). Effect of phasor measurement unit on power state estimation considering parameters uncertainty. In 2012 IEEE International Workshop on Applied Measurements for Power Systems (AMPS) Proceedings, pages 1–5. | |
dc.relation | [Dehghanpour et al., 2019] Dehghanpour, K., Wang, Z., Wang, J., Yuan, Y., and Bu, F. (2019). A survey on state estimation techniques and challenges in smart distribution systems. IEEE Transactions on Smart Grid, 10(2):2312–2322. | |
dc.relation | [Dhaikar and Nagarajan, 2021] Dhaikar, A. K. and Nagarajan, S. T. (2021). State estimation along wls-phasor measurements in power system. In 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN), pages 862–867. | |
dc.relation | [Dorier et al., 2021] Dorier, M., Frigo, G., Abur, A., and Paolone, M. (2021). Leverage point identification method for lav-based state estimation. IEEE Transactions on Instrumentation and Measurement, 70:1–10. | |
dc.relation | El Adlouni et al., 2007] El Adlouni, S., Ouarda, T., Zhang, X., Roy, R., and Bob´ee, B. (2007). Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resources Research - WATER RESOUR RES, 43. | |
dc.relation | [Farivar and Low, 2013] Farivar, M. and Low, S. H. (2013). Branch flow model: Relaxations and convexification—part i. IEEE Transactions on Power Systems, 28(3):2554–2564. | |
dc.relation | [Garc´es, 2020] Garc´es, A. (2020). Optimizaci´on convexa, aplicaciones en operaci´on y din´amica de sistemas de potencia. Technological University of Pereira. | |
dc.relation | [Garc´es, 2021] Garc´es, A. (2021). Mathematical Programming for Power Systems Operation From theory to applications in Python. Wiley-IEEE Press. | |
dc.relation | [Garc´es Alejandro and Alexander, 2020] Garc´es Alejandro, G. D. and Alexander, M. (2020). Odin: Operaci´on de sistemas de distribuci´on inteligente. | |
dc.relation | [Grainger and Stevenson, 2000] Grainger, J. and Stevenson, W. (2000). Analisis de sistemas de potencia. McGraw-Hill. | |
dc.relation | Grainger and Stevenson Jr, 1996] Grainger, J. J. and Stevenson Jr, W. D. (1996). An´alisis de Sistemas de Potencia. McGRAW-HILL Interamericana de M´exico S.A | |
dc.relation | [Granada-Echeverri et al., 2016] Granada-Echeverri, M., Gallego Rend´on, R., and Escobar Zuluaga, A. (2016). Flujo de carga en sistemas de transmisi´on - Modelamiento y an´alisis. UTP. | |
dc.relation | [Guerrero, 2016] Guerrero, M. A. V. (2016). Evaluaci´on de rendimiento de estimadores no lineales basados en la aplicaci´on del filtro de Kalman a se˜nales biomec´anicas. PhD thesis, Facultad de ingenier´ıa, Universidad Pedag´ogica y Tecnol´ogica de Colombia. | |
dc.relation | [Guthrie and Mallada, 2019] Guthrie, J. and Mallada, E. (2019). Adversarial model predictive control via second-order cone programming. In 2019 IEEE 58th Conference on Decision and Control (CDC), pages 1403–1409. | |
dc.relation | [Hanushek and Jackson, 1977a] Hanushek, E. A. and Jackson, J. E. (1977a). 4 - ordinary least squares in practice. In Hanushek, E. A. and Jackson, J. E., editors, Statistical Methods for Social Scientists, pages 75–108. Academic Press, San Diego. | |
dc.relation | [Hanushek and Jackson, 1977b] Hanushek, E. A. and Jackson, J. E. (1977b). 4 - ordinary least squares in practice. In Hanushek, E. A. and Jackson, J. E., editors, Statistical Methods for Social Scientists, pages 75–108. Academic Press, San Diego. | |
dc.relation | [Hayes and Prodanovic, 2014] Hayes, B. and Prodanovic, M. (2014). State estimation techniques for electric power distribution systems. In 2014 European Modelling Symposium, pages 303–308. | |
dc.relation | [Huang et al., 2019] Huang, S., Filonenko, K., and Veje, C. T. (2019). A review of the convexification methods for ac optimal power flow. In 2019 IEEE Electrical Power and Energy Conference (EPEC), pages 1–6. | |
dc.relation | IEEE, 2011] IEEE (2011). Ieee standard for synchrophasor measurements for power systems. IEEE Std C37.118.1-2011 (Revision of IEEE Std C37.118-2005), pages 1–61. | |
dc.relation | [Jabr, 2006] Jabr, R. (2006). Radial distribution load flow using conic programming. IEEE Transactions on Power Systems, 21(3):1458–1459. | |
dc.relation | [Jalali et al., 2022] Jalali, M., Kekatos, V., Bhela, S., Zhu, H., and Centeno, V. A. (2022). Inferring power system dynamics from synchrophasor data using gaussian processes. IEEE Transactions on Power Systems, pages 1–1. | |
dc.relation | [Ju´arez, 2016] Ju´arez, A. G. (2016). Estimadores de Estado en Redes de Distribuci´on: Revisi´on del Estado del Arte. PhD thesis, Escuela T´ecnica Superior de Ingenier´ıa Universidad de Sevilla. | |
dc.relation | [Karimi et al., 2019] Karimi, M., Shahriari, A., Aghamohammadi, M., Marzooghi, H., and Terzija, V. (2019). Application of newton-based load flow methods for determining steady-state condition of well and ill-conditioned power systems: A review. International Journal of Electrical Power Energy Systems, 113:298–309. | |
dc.relation | [Karimipour and Dinavahi, 2016] Karimipour, H. and Dinavahi, V. (2016). Parallel domain-decomposition-based distributed state estimation for power systems. IEEE Transactions on Industry Applications, 52(2):1265–1269. | |
dc.relation | [Karunasingha, 2022] Karunasingha, D. S. K. (2022). Root mean square error or mean absolute error? use their ratio as well. Information Sciences, 585:609–629. | |
dc.relation | [Kim et al., 2019] Kim, J., Kim, H. T., and Choi, S. (2019). Performance criterion of phasor measurement units for distribution system state estimation. IEEE Access, 7:106372–106384. | |
dc.relation | [Kim et al., 2014] Kim, S.-J., Wang, G., and Giannakis, G. B. (2014). Online semidefinite programming for power system state estimation. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 6024–6027. | |
dc.relation | [Lan et al., 2018] Lan, Y., Zhu, H., and Guan, X. (2018). Fast nonconvex sdp solver for large-scale power system state estimation. In 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pages 870–874. | |
dc.relation | [Lee and Centeno, 2018] Lee, L.-A. and Centeno, V. (2018). Comparison of micropmu and pmu. In 2018 Clemson University Power Systems Conference (PSC), pages 1–6. | |
dc.relation | [Leung, 2022] Leung, A. (2022). Chapter twenty-one - maximum likelihood estimation. In Leung, A., editor, Actuarial Principles, pages 117–122. Academic Press. | |
dc.relation | [Liu et al., 2015a] Liu, J., Gao, H., Ma, Z., and Li, Y. (2015a). Review and prospect of active distribution system planning. Journal of Modern Power Systems and Clean Energy, 3(4):457–467. | |
dc.relation | [Low, 2014] Low, S. H. (2014). Convex relaxation of optimal power flow—part i: Formulations and equivalence. IEEE Transactions on Control of Network Systems, 1(1):15–27. | |
dc.relation | [Meurant, 2014] Meurant, G. (2014). Handbook of Convex Geometry. Elsevier Science. | |
dc.relation | [Mili et al., 1991] Mili, L., Phaniraj, V., and Rousseeuw, P. (1991). Least median of squares estimation in power systems. IEEE Transactions on Power Systems, 6(2):511–523 | |
dc.relation | [Molzahn and Hiskens, 2015] Molzahn, D. K. and Hiskens, I. A. (2015). Mixed sdp/socp moment relaxations of the optimal power flow problem. In 2015 IEEE Eindhoven PowerTech, pages 1–6. | |
dc.relation | [Molzahn and Hiskens, 2016] Molzahn, D. K. and Hiskens, I. A. (2016). Convex relaxations of optimal power flow problems: An illustrative example. IEEE Transactions on Circuits and Systems I: Regular Papers, 63(5):650–660. | |
dc.relation | [Monticelli, 1999] Monticelli, A. (1999). STATE ESTIMATION IN ELECTRIC POWER SYSTEMS A Generalized Approach. Kluwer Academic. | |
dc.relation | [Mount et al., 2014] Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., and Wu, A. Y. (2014). On the least trimmed squares estimator. Algorithmica. | |
dc.relation | [Mount et al., 2016] Mount, D. M., Netanyahu, N. S., Piatko, C. D., Wu, A. Y., and Silverman, R. (2016). A practical approximation algorithm for the lts estimator. Computational Statistics y Data Analysis, 99:148–170. | |
dc.relation | [Muscas et al., 2014] Muscas, C., Pau, M., Pegoraro, P. A., and Sulis, S. (2014). Effects of measurements and pseudomeasurements correlation in distribution system state estimation. IEEE Transactions on Instrumentation and Measurement, 63(12):2813–2823. | |
dc.relation | [Nanni et al., 2008] Nanni, M., London, J. B. A., Delbem, A. C. B., and Bretas, N. G. (2008). Robust state estimator based on least median of squares method. In 2008 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America, pages 1–6 | |
dc.relation | [Narasimhan, 2018] Narasimhan, H. (2018). Learning with complex loss functions and constraints. In Storkey, A. and Perez-Cruz, F., editors, Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, volume 84 of Proceedings of Machine Learning Research, pages 1646–1654. PMLR. | |
dc.relation | [Ni et al., 2011] Ni, D., Zhang, W., Yu, B., and Gong, W. (2011). A new algorithm for power system state estimation with pmu measurements. In 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), pages 114–117. | |
dc.relation | [Park et al., 1995] Park, H., Rosen, J., and Van Huffel, S. (1995). 40 - structure preserving total least squares method and its application to parameter estimation. In Moonen, M. and Moor, B. D., editors, SVD and Signal Processing III, pages 399–406. Elsevier Science B.V., Amsterdam. | |
dc.relation | [Peng et al., 2008] Peng, H., Wang, S., and Wang, X. (2008). Consistency and asymptotic distribution of the theil–sen estimator. Journal of Statistical Planning and Inference, 138(6):1836–1850. | |
dc.relation | [Penin, 2007a] Penin, A. (2007a). Sistemas SCADA: gu´ıa pr´actica. Marcombo. | |
dc.relation | [Penin, 2007b] Penin, A. (2007b). Sistemas SCADA: gu´ıa pr´actica. Marcombo. | |
dc.relation | [Phadke and Thorp, 2006] Phadke, A. G. and Thorp, J. S. (2006). History and applications of phasor measurements. In 2006 IEEE PES Power Systems Conference and Exposition, volume 1, pages 331–335 | |
dc.relation | [Qiu et al., 2013] Qiu, R. C., Hu, Z., Li, H., and Wicks, M. C. (2013). Convex Optimization, pages 235–282. Wiley | |
dc.relation | [Ram´ırez Casta˜no, 2004] Ram´ırez Casta˜no, J. (2004). Redes de Distribuci´on de Energ´ıa. Universidad Nacional. | |
dc.relation | [Rostami and Lotfifard, 2018] Rostami, M. and Lotfifard, S. (2018). Distributed dynamic state estimation of power systems. IEEE Transactions on Industrial Informatics, 14(8):3395–3404 | |
dc.relation | [Schweppe and Wildes, 1970] Schweppe, F. C. and Wildes, J. (1970). Power system static-state estimation, part i: Exact model. IEEE Transactions on Power Apparatus and Systems, PAS-89(1):120–125. | |
dc.relation | [Shi et al., 2022] Shi, Y., Yang, K., Yang, Z., and Zhou, Y. (2022). Chapter three - convex optimization. In Shi, Y., Yang, K., Yang, Z., and Zhou, Y., editors, Mobile Edge Artificial Intelligence, pages 37–55. Academic Press. | |
dc.relation | [Sigmund and Petersson, 1998] Sigmund, O. and Petersson, J. (1998). Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. JOUR, pages 1615–1488. | |
dc.relation | [Thomas and McDonald, 2015] Thomas, M. S. and McDonald, J. D. (2015). Power System SCADA and Smart Grids, volume 1, page 352. Taylor y Francis Group. | |
dc.relation | [Weng et al., 2012] Weng, Y., Li, Q., Negi, R., and Ili´c, M. (2012). Semidefinite programming for power system state estimation. In 2012 IEEE Power and Energy Society General Meeting, pages 1–8 | |
dc.relation | [Weng et al., 2013] Weng, Y., Li, Q., Negi, R., and Ili´c, M. (2013). Distributed algorithm for sdp state estimation. In 2013 IEEE PES Innovative Smart Grid Technologies Conference (ISGT), pages 1–6 | |
dc.relation | [Wu, 1990] Wu, F. F. (1990). Power system state estimation: a survey. International Journal of Electrical Power Energy Systems, 12(2):80–87. | |
dc.relation | Yuan, 2006] Yuan, W. S.-X. (2006). Chapter 3 - newton’s methods. In Optimization Theory and Methods, Springer Optimization and Its Applications, pages 119–173. Springer, Boston, MA. | |
dc.relation | [Zaldivar, 1995] Zaldivar, V. A. C. (1995). Adaptive out-of-step relaying with phasor measurement. PhD thesis, Virginia Polytechnic Institute and State University. | |
dc.relation | [Zhang and Zamar, 2014] Zhang, H. and Zamar, R. (2014). Least angle regression for model selection. Wiley Interdisciplinary Reviews: Computational Statistics, 6. | |
dc.relation | [Zhang et al., 2019] Zhang, R. Y., Lavaei, J., and Baldick, R. (2019). Spurious local minima in power system state estimation. IEEE Transactions on Control of Network Systems, 6(3):1086–1096. | |
dc.relation | Zhang et al., 2018] Zhang, Y., Madani, R., and Lavaei, J. (2018). Conic relaxations for power system state estimation with line measurements. IEEE Transactions on Control of Network Systems, 5(3):1193–1205. | |
dc.relation | [Zheng et al., 2016] Zheng, W., Wu, W., Zhang, B., Sun, H., and Liu, Y. (2016). A fully distributed reactive power optimization and control method for active distribution networks. IEEE Transactions on Smart Grid, 7(2):1021–1033. | |
dc.relation | [Zhu and Giannakis, 2012] Zhu, H. and Giannakis, G. B. (2012). Multi-area state estimation using distributed sdp for nonlinear power systems. In 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm), pages 623–628. | |
dc.relation | [Zhu and Giannakis, 2014] Zhu, H. and Giannakis, G. B. (2014). Power system nonlinear state estimation using distributed semidefinite programming. IEEE Journal of Selected Topics in Signal Processing, 8(6):1039–1050 | |
dc.relation | [Ziegler, 2014] Ziegler, A. (2014). Generalized Estimating Equations, volume 204. Springer New York, NY | |
dc.relation | [Zohrizadeh et al., 2020] Zohrizadeh, F., Josz, C., Jin, M., Madani, R., Lavaei, J., and Sojoudi, S. (2020). A survey on conic relaxations of optimal power flow problem. European Journal of Operational Research, 287(2):391–409 | |
dc.rights | Manifiesto (Manifestamos) en este documento la voluntad de autorizar a la Biblioteca Jorge Roa Martínez de la Universidad Tecnológica de Pereira la publicación en el Repositorio institucional (http://biblioteca.utp.edu.co), la versión electrónica de la OBRA titulada: ________________________________________________________________________________________________ ________________________________________________________________________________________________ ________________________________________________________________________________________________ La Universidad Tecnológica de Pereira, entidad académica sin ánimo de lucro, queda por lo tanto facultada para ejercer plenamente la autorización anteriormente descrita en su actividad ordinaria de investigación, docencia y publicación. La autorización otorgada se ajusta a lo que establece la Ley 23 de 1982. Con todo, en mi (nuestra) condición de autor (es) me (nos) reservo (reservamos) los derechos morales de la OBRA antes citada con arreglo al artículo 30 de | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | 620 - Ingeniería y operaciones afines::621 - Física aplicada | |
dc.subject | Electricidad - Dispositivos de distribución | |
dc.subject | Sistemas de interconexión eléctrica - Automatización | |
dc.subject | Síntesis de redes eléctricas | |
dc.subject | Active distribution networks | |
dc.subject | Micro-pmu | |
dc.subject | Second-order cone | |
dc.title | State estimation in active distribution networks using convex optimization | |
dc.type | Trabajo de grado - Maestría | |
dc.type | http://purl.org/coar/resource_type/c_bdcc | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/masterThesis | |
dc.type | info:eu-repo/semantics/acceptedVersion | |