dc.contributorTinoco Navarro , Hector Andres
dc.creatorMarulanda Hurtado , Dairon José
dc.creatorRobledo Callejas , Leonardo
dc.date2023-03-14T19:44:49Z
dc.date2023-03-14T19:44:49Z
dc.date2022
dc.date.accessioned2023-06-05T15:16:57Z
dc.date.available2023-06-05T15:16:57Z
dc.identifierUniversidad Tecnológica de Pereira
dc.identifierRepositorio Institucional Universidad Tecnológica de Pereira
dc.identifierhttps://repositorio.utp.edu.co/home
dc.identifierhttps://hdl.handle.net/11059/14610
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6645755
dc.descriptionEn esta tesis se presenta el uso de la técnica de impedancia electromecánica para la detección y localización de daños en estructuras activas bajo un enfoque de monitoreo estructural mediante pruebas experimentales. Dado que las señales obtenidas de las pruebas experimentales suelen presentar ruidos y grandes dispersiones, estas se homogenizan mediante las funciones de distribución normal, lo que permite estimar diferentes índices escalares para establecer la detección, cuantificación y localización de los daños cuando se comparan las señales capturadas de la estructura sin daño, denominada señal de referencia, con las de la estructura afectada por los daños, denominada señal de monitoreo. Se proponen tres pruebas experimentales en las que se inducen diferentes tipos de daño a las estructuras activas, y se usan transductores piezoeléctricos y un analizador de impedancia para detectar la presencia del daño, cuantificar su severidad y determinar su localización. En la primera prueba, los daños inducidos son marcas y perforaciones practicadas en el material de la estructura, con dimensiones controladas. La segunda prueba se realiza controlando dos tamaños para las perforaciones y cuatro distancias entre estas y el parche piezoeléctrico. Las mediciones de impedancia eléctrica son desacopladas tanto antes como después de inducir los daños en la estructura activa. En la última prueba, el daño estructural se formula como la pérdida de torque de apriete en uniones pernadas. Se encontró que los índices estadísticos usados son criterios adecuados para determinar la presencia del daño en la estructura, así como su severidad y su localización con respecto a la del transductor piezoeléctrico. Esto se concluye al observar las diferencias entre los índices calculados a partir de mediciones de impedancia eléctrica en la estructura intacta con respecto a las mediciones realizadas después de inducir daños en diferentes etapas y ubicaciones.
dc.descriptionThis thesis presents the use of the electro-mechanical impedance technique for the detection and localization of damage in active structures under a structural monitoring approach by means of experimental tests. Since the signals obtained from experimental tests usually present noises and large dispersions, these are homogenized by means of normal distribution functions, which allows estimating different scalar indices to establish the detection, quantification and localization of damage when comparing the signals captured from the undamaged structure, called reference signal, with those from the structure affected by damage, called monitoring signal. Three experimental tests are proposed in which different types of damage are induced to active structures, and piezoelectric transducers and an impedance analyzer are used to detect the presence of damage, quantify its severity, and determine its location. In the first test, the induced damages are marks and holes drilled in the material of the structure, with controlled dimensions. The second test is performed by controlling two sizes for the perforations and four distances between the perforations and the piezoelectric patch. Electrical impedance measurements are decoupled both before and after inducing damage to the active structure. In the last test, structural damage is formulated as the loss of tightening torque in bolted joints. It was found that the statistical indices used are adequate criteria to determine the presence of damage in the structure, as well as its severity and its location with respect to that of the piezoelectric transducer. This is concluded by observing the differences between the indices calculated from electrical impedance measurements on the undamaged structure with respect to measurements made after inducing damage at different stages and locations.
dc.descriptionMaestría
dc.descriptionMagíster en Sistemas Automáticos de Producción
dc.descriptionCONTENIDO CAPÍTULO 1 PRESENTACIÓN ............................................................................ 14 1.2 Justificación .......................................................................................... 16 1.3 Planteamiento del problema ................................................................. 17 1.4 Antecedentes ........................................................................................ 19 1.5 Objetivos ............................................................................................... 20 1.5.1 Objetivo general ............................................................................. 20 1.5.2 Objetivos específicos...................................................................... 21 1.6 Estructura de la tesis ............................................................................ 21 CAPÍTULO 2 IDENTIFICACIÓN DE DAÑOS EN PLACAS ACTIVAS CON ÍNDICES BASADOS EN ELIPSES DE CONFIANZA GAUSSIANAS OBTENIDAS DE LA ADMITANCIA ELECTROMECÁNICA ................................................................... 22 2.1 Introducción .......................................................................................... 22 2.2 Fundamentos teóricos........................................................................... 25 2.2.1 Impedancia electromecánica (EM) acoplada para transductores piezoeléctricos .............................................................................................. 25 2.2.2 Índices de daño basados en una distribución gaussiana normal ... 29 2.2.3 Estimación de la línea base de daño .............................................. 32 2.2.4 Índices RMSD y MAPD para la técnica EMI ................................... 33 2.3 Montaje experimental ............................................................................ 35 2.4 Resultados y discusión ......................................................................... 37 2.4.1 Prueba 1: Identificación de daños superficiales con el índice EDI . 37 2.4.2 Prueba 2: Identificación de daños con diferentes índices (EDI, R M y θ N ) 44 vii 2.4.3 Prueba 3: Identificación de daños a partir de una línea de base probabilística ................................................................................................. 50 CAPÍTULO 3 DETECCIÓN DE DAÑOS EN PLACAS ACTIVAS MEDIANTE LA TÉCNICA DE IMPEDANCIA ELECTROMECÁNICA BASADA EN MEDICIONES DESACOPLADAS DE TRANSDUCTORES PIEZOELÉCTRICOS ....................... 56 3.1 Introducción .......................................................................................... 56 3.2 Fundamentos teóricos........................................................................... 60 3.2.1 Desacople de la impedancia electromecánica (EM) considerando un circuito en paralelo ........................................................................................ 60 3.2.2 Índice Hr basado en una elipse de confianza gaussiana .............. 63 3.3 Metodologías de detección de daños ................................................... 64 3.3.1 Metodología de identificación de daños usando la reactancia ( X ) 64 3.3.2 Metodología de localización de daños mediante la resistencia ( R ) 67 3.4 Montaje experimental ............................................................................ 70 3.5 Resultados y discusión ......................................................................... 72 3.5.1 Identificación de los daños ............................................................. 72 3.5.2 Identificación y localización de daños ............................................ 79 CAPÍTULO 4 DETECCIÓN DE PÉRDIDA DE TORQUE EN UNIONES PERNADAS USANDO LA TÉCNICA DE LA IMPEDANCIA ELECTROMECÁNICA .................. 89 4.1 Introducción .......................................................................................... 89 4.2 Fundamentos teóricos........................................................................... 91 4.2.1 Técnica de impedancia electromecánica........................................ 91 4.2.2 Rango de frecuencia ...................................................................... 91 viii 4.3 Índices de identificación de perdida de par o aflojamiento .................... 91 4.4 Montaje experimental ............................................................................ 92 4.5 Resultados y discusión ......................................................................... 96 CAPÍTULO 5 CONCLUSIONES .......................................................................... 102 PUBLICACIONES ............................................................................................... 104 REFERENCIAS ................................................................................................... 105 ANEXOS ............................................................................................................. 115
dc.format121 Páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Tecnológica de Pereira
dc.publisherFacultad de Ingenierías
dc.publisherPereira
dc.publisherMaestría en Sistemas Automáticos de Producción
dc.relationAdams, D. E. (2007). Health Monitoring of Structural Materials and Components: Methods with Applications. In Health Monitoring of Structural Materials and Components: Methods with Applications. https://doi.org/10.1002/9780470511589
dc.relationAi, D., Zhu, H., Luo, H., & Yang, J. (2014). An effective electromechanical impedance technique for steel structural health monitoring. Construction and Building Materials, 73, 97–104. https://doi.org/10.1016/J.CONBUILDMAT.2014.09.029
dc.relationAmerini, F., & Meo, M. (2011). Structural health monitoring of bolted joints using linear and nonlinear acoustic/ultrasound methods. Structural Health Monitoring, 10(6), 659–672. https://doi.org/10.1177/1475921710395810
dc.relationAnalog Devices. (2014). Datasheet AD5933.
dc.relationAnnamdas, V. G. M., & Soh, C. K. (2010). Application of Electromechanical Impedance Technique for Engineering Structures: Review and Future Issues. Journal of Intelligent Material Systems and Structures, 21(1), 41–59. https://doi.org/10.1177/1045389X09352816
dc.relationAnnamdas, V. G. M., Yang, Y., & Soh, C. K. (2007). Influence of loading on the electromechanical admittance of piezoceramic transducers. Smart Materials and Structures, 16(5), 1888. https://doi.org/10.1088/0964-1726/16/5/045
dc.relationArgatov, I., & Sevostianov, I. (2010). Health monitoring of bolted joints via electrical conductivity measurements. International Journal of Engineering Science, 48(10), 874–887. https://doi.org/10.1016/J.IJENGSCI.2010.05.009
dc.relationBaptista, F. G., Filho, J. V., & Inman, D. J. (2011). Real-time multi-sensors measurement system with temperature effects compensation for impedance based structural health monitoring. Structural Health Monitoring, 11(2), 173– 186. https://doi.org/10.1177/1475921711414234
dc.relationBerger, V. W., & Zhou, Y. (2014). Kolmogorov–Smirnov Test: Overview. Wiley StatsRef: Statistics Reference Online. https://doi.org/10.1002/9781118445112.STAT06558
dc.relationBerney, H., & O’riordan, J. J. (2008). Impedance measurement monitors blood coagulation. Analog Dialogue, 42(3), 42–48.
dc.relationBhalla, S., & Soh, C. K. (2004a). Structural Health Monitoring by Piezo-Impedance Transducers. I: Modeling. Journal of Aerospace Engineering, 17(4), 154–165. https://doi.org/10.1061/(ASCE)0893-1321(2004)17:4(154)
dc.relationBhalla, S., & Soh, C. K. (2004b). Structural Health Monitoring by Piezo-Impedance Transducers. II: Applications. Journal of Aerospace Engineering, 17(4), 166– 175. https://doi.org/10.1061/(ASCE)0893-1321(2004)17:4(166)
dc.relationChen, W. Q., & Yan, W. (2010). Structural health monitoring using high-frequency electromechanical impedance signatures. Advances in Civil Engineering, 2010. https://doi.org/10.1155/2010/429148
dc.relationChou, J. H., & Ghaboussi, J. (2001). Genetic algorithm in structural damage detection. Computers & Structures, 79(14), 1335–1353. https://doi.org/10.1016/S0045-7949(01)00027-X
dc.relationChou, J. Y., & Chang, C. M. (2022). Low-story damage detection of buildings using deep neural network from frequency phase angle differences within a low frequency band. Journal of Building Engineering, 55, 104692. https://doi.org/10.1016/J.JOBE.2022.104692
dc.relationChristensen, R. (1997). Log-Linear Models and Logistic Regression. In Log-Linear Models and Logistic Regression (2nd ed.). Springer New York. https://doi.org/10.1007/B97647
dc.relationCuc, A., & Giurgiutiu, V. (2004). Disbond detection in adhesively bonded structures using piezoelectric wafer active sensors. SPIE 5394, Health Monitoring and Smart Nondestructive Evaluation of Structural and Biological Systems III, 5394, 66–77. https://doi.org/10.1117/12.540358
dc.relationDimitrova, D. S., Kaishev, V. K., & Tan, S. (2020). Computing the Kolmogorov Smirnov Distribution When the Underlying CDF is Purely Discrete, Mixed, or Continuous. Journal of Statistical Software, 95, 1–42. https://doi.org/10.18637/JSS.V095.I10
dc.relationDoebling, S. W. S., Farrar, C. R. C., Prime, M. B. M., & Shevitz, D. W. D. (1996). Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review. In Los Alamos National Laboratory. https://doi.org/10.2172/249299
dc.relationDraper, N. R., & Smith, H. (2014). Applied Regression Analysis (3rd ed.). Wiley
dc.relationFerreira, J., Seoane, F., Ansede, A., & Bragos, R. (2010). AD5933-based spectrometer for electrical bioimpedance applications. Journal of Physics: Conference Series, 224(1), 012011. https://doi.org/10.1088/1742- 6596/224/1/012011
dc.relationFu, Z.-F., & He, J. H. (2001). Modal analysis (Z.-F. Fu & J. H. He (eds.); 1st ed.). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-7506-5079-3.X5000-1
dc.relationGiurgiutiu, V. (2014a). Structural health monitoring with piezoelectric wafer active sensors (V. Giurgiutiu (ed.); 2nd ed.)
dc.relationGiurgiutiu, V. (2014b). High-Frequency Vibration SHM with PWAS Modal Sensors – the Electromechanical Impedance Method. In V. Giurgiutiu (Ed.), Structural Health Monitoring with Piezoelectric Wafer Active Sensors (pp. 509–572). Academic Press. https://doi.org/10.1016/B978-0-12-418691-0.00011-3
dc.relationGiurgiutiu, V. (2014c). Introduction. In V. Giurgiutiu (Ed.), Structural Health Monitoring with Piezoelectric Wafer Active Sensors (2nd ed., pp. 1–19). Academic Press. https://doi.org/10.1016/B978-0-12-418691-0.00001-0
dc.relationGiurgiutiu, V., & Kropas-Hughes, C. V. (2003). Comparative study of neural-network damage detection from a statistical set of electro-mechanical impedance spectra. NDE for Health Monitoring and Diagnostics, 108–119. https://doi.org/10.1117/12.484050
dc.relationGiurgiutiu, V., Reynolds, A., & Rogers, C. A. (1999). Experimental Investigation of E/M Impedance Health Monitoring for Spot-Welded Structural Joints. Journal of Intelligent Material Systems and Structures, 10(10), 802–812. https://doi.org/10.1106/N0J5-6UJ2-WLGV-Q8MC
dc.relationGiurgiutiu, V., & Rogers, C. A. (1997, September). Electro-Mechanical (E/M) Impedance Method for Structural Health Monitoring and Non-Destructive Evaluation. International Workshop on Structural Health Monitoring, Stanford University, CA.
dc.relationGiurgiutiu, V., & Zagrai, A. (2005). Damage Detection in Thin Plates and Aerospace Structures with the Electro-Mechanical Impedance Method. Structural Health Monitoring, 4(2), 99–118. https://doi.org/10.1177/1475921705049752
dc.relationGiurgiutiu, V., Zagrai, A., & Bao, J. J. (2016). Piezoelectric Wafer Embedded Active Sensors for Aging Aircraft Structural Health Monitoring. Structural Health Monitoring, 1(1), 41–61. https://doi.org/10.1177/147592170200100104
dc.relationGresil, M., Yu, L., Giurgiutiu, V., & Sutton, M. (2012). Predictive modeling of 108 electromechanical impedance spectroscopy for composite materials. Structural Health Monitoring, 11(6), 671–683. https://doi.org/10.1177/1475921712451954
dc.relationGuarino, J., Hamilton, R., & Fischer, W. (2009). Acoustic detection of bolt detorquing in structures. Proceedings of Meetings on Acoustics, 6(1), 065002. https://doi.org/10.1121/1.3167485
dc.relationHamdan, A., Sultan, M. T. H., & Mustapha, F. (2019). Structural health monitoring of biocomposites, fibre-reinforced composites, and hybrid composite. In Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites (pp. 227–242). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102291-7.00011-3
dc.relationHewlett Packard. (1996). HP LF 4192A: Impedance Analyzer Operation Manual... - Google Académico.
dc.relationHu, X., Zhu, H., & Wang, D. (2014). A Study of Concrete Slab Damage Detection Based on the Electromechanical Impedance Method. Sensors, 14(10), 19897– 19909. https://doi.org/10.3390/S141019897
dc.relationHuang, Y. H., Liu, L., Yeung, T. W., & Hung, Y. Y. (2009). Real-time monitoring of clamping force of a bolted joint by use of automatic digital image correlation. Optics & Laser Technology, 41(4), 408–414. https://doi.org/10.1016/J.OPTLASTEC.2008.08.010
dc.relationInman, D. J., Farrar, C. R., Lopes, V., & Steffen, V. (2005). Damage Prognosis: For Aerospace, Civil and Mechanical Systems. In D. J. Inman, C. R. Farrar, V. Lopes Junior, & V. Steffen Junior (Eds.), Damage Prognosis: For Aerospace, Civil and Mechanical Systems. John Wiley and Sons. https://doi.org/10.1002/0470869097
dc.relationKessler, S. S., & Spearing, S. M. (2002). Design of a piezoelectric-based structural health monitoring system for damage detection in composite materials. In P. Davis (Ed.), Smart Structures and Materials 2002: Smart Structures and Integrated Systems (Vol. 4701, pp. 86–96). SPIE. https://doi.org/10.1117/12.474649
dc.relationKeysight Technologies. (2020). Impedance Measurement Handbook.
dc.relationKeysight Technologies. (2021). A data sheet of Agilent E4980A precision LCRmeter.
dc.relationKhadour, A., & Waeytens, J. (2018). Monitoring of concrete structures with optical fiber sensors. In Eco-efficient Repair and Rehabilitation of Concrete Infrastructures (pp. 97–121). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102181-1.00005-8
dc.relationKhomenko, A., Koricho, E. G., Haq, M., & Cloud, G. L. (2016). Bolt tension monitoring with reusable fiber Bragg-grating sensors. Journal of Strain Analysis for Engineering Design, 51(2), 101–108. https://doi.org/10.1177/0309324715598265
dc.relationLiang, C., Sun, F. P., & Rogers, C. A. (1994a). An Impedance Method for Dynamic Analysis of Active Material Systems. Journal of Vibration and Acoustics, 116(1), 120–128. https://doi.org/10.1115/1.2930387
dc.relationLiang, C., Sun, F. P., & Rogers, C. A. (1994b). Coupled Electro-Mechanical Analysis of Adaptive Material Systems — Determination of the Actuator Power Consumption and System Energy Transfer. Journal of Intelligent Material Systems and Structures, 5(1), 12–20. https://doi.org/10.1177/1045389X9400500102
dc.relationLiang, C., Sun, F., & Rogers, C. A. (1996). Electro-mechanical impedance modeling of active material systems. Smart Materials and Structures, 5(2), 171. https://doi.org/10.1088/0964-1726/5/2/006
dc.relationLiang, Y., Feng, Q., Li, D., & Cai, S. (2018). Loosening monitoring of a threaded pipe connection using the electro-mechanical impedance technique—experimental and numerical studies. Sensors (Switzerland), 18(11). https://doi.org/10.3390/s18113699
dc.relationLilliefors, H. W. (1967). On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown. Journal of the American Statistical Association, 62(318), 399–402. https://doi.org/10.1080/01621459.1967.10482916
dc.relationLingyu, Y., & Giurgiutiu, V. (2008). Multi-mode Damage Detection Methods with Piezoelectric Wafer Active Sensors. Journal of Intelligent Material Systems and Structures, 20(11), 1329–1341. https://doi.org/10.1177/1045389X08096665
dc.relationLiu, S. C., Tomizuka, M., & Ulsoy, G. (2006). Strategic issues in sensors and smart structures. Structural Control and Health Monitoring, 13(6), 946–957. https://doi.org/10.1002/STC.88
dc.relationMadgav, A. V. G., & Soh, C. K. (2007). Uniplexing and Multiplexing of PZT Transducers for Structural Health Monitoring. Journal of Intelligent Material Systems and Structures, 19(4), 457–467. https://doi.org/10.1177/1045389X06075523
dc.relationMalinowski, P., Wandowski, T., & Ostachowicz, W. (2015). The use of electromechanical impedance conductance signatures for detection of weak adhesive bonds of carbon fibre–reinforced polymer. Structural Health Monitoring, 14(4), 332–344. https://doi.org/10.1177/1475921715586625
dc.relationMartowicz, A., & Rosiek, M. (2013). Electromechanical Impedance Method. In Advanced Structural Damage Detection: From Theory to Engineering Applications (pp. 141–176). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118536148.CH6
dc.relationMiller Jr, R. G. (1997). Beyond ANOVA: Basics of Applied Statistics. CRC Press.
dc.relationMoharana, S., & Bhalla, S. (2015). Influence of adhesive bond layer on power and energy transduction efficiency of piezo-impedance transducer. Journal of Intelligent Material Systems and Structures, 26(3), 247–259. https://doi.org/10.1177/1045389X14523858
dc.relationNa, W. S. (2022). A portable bolt-loosening detection system with piezoelectric based nondestructive method and artificial neural networks. Structural Health Monitoring, 21(2), 683–694. https://doi.org/10.1177/14759217211008619
dc.relationNaidu, A. S. K. (2004). Structural damage identification with admittance signatures of smart PZT transducers. Nanyang Technological University.
dc.relationNg, C. T., & Veidt, M. (2009). A Lamb-wave-based technique for damage detection in composite laminates. Smart Materials and Structures, 18(7), 074006. https://doi.org/10.1088/0964-1726/18/7/074006
dc.relationOlivier Cherrier , Valérie Budinger , Frédéric Lachaud, J. M. P. S. (2013). Smart monitoring of aeronautical composites plates based on electromechanical impedance measurements and artificial neural networks. Engineering Structures, 794–804
dc.relationOverly, T. G., Park, G., Farinholt, K. M., & Farrar, C. R. (2009). Piezoelectric active sensor diagnostics and validation using instantaneous baseline data. IEEE Sensors Journal, 9(11), 1414–1421. https://doi.org/10.1109/JSEN.2009.2018351
dc.relationPandey, A. K., Biswas, M., & Samman, M. M. (1991). Damage detection from changes in curvature mode shapes. Journal of Sound and Vibration, 145(2), 321–332. https://doi.org/10.1016/0022-460X(91)90595-B
dc.relationPanigrahi, R., Bhalla, S., & Gupta, A. (2010). A low-cost variant of electro mechanical impedance (EMI) technique for structural health monitoring. Experimental Techniques, 34(2), 25–29. https://doi.org/10.1111/J.1747- 1567.2009.00524.X
dc.relationPark, G., Cudney, H. H., & Inman, D. J. (2000). Impedance-Based Health Monitoring of Civil Structural Components. Journal of Infrastructure Systems, 6(4), 153– 160. https://doi.org/10.1061/(ASCE)1076-0342(2000)6:4(153)
dc.relationPark, G., & Inman, D. J. (2005). Impedance-Based Structural Health Monitoring. In Damage Prognosis: For Aerospace, Civil and Mechanical Systems (pp. 275– 292). John Wiley & Sons, Ltd. https://doi.org/10.1002/0470869097.CH13
dc.relationPark, G., Sohn, H., Farrar, C. R., & Inman, D. J. (n.d.). Overview of Piezoelectric Impedance-Based Health Monitoring and Path Forward.
dc.relationPark, G., Sohn, H., Farrar, C. R., & Inman, D. J. (2003). Overview of piezoelectric impedance-based health monitoring and path forward. Shock and Vibration Digest, 35(6), 451–463. https://doi.org/10.1177/05831024030356001
dc.relationPark, S., Yun, C.-B., Roh, Y., & Lee, J.-J. (2005). Health monitoring of steel structures using impedance of thickness modes at PZT patches. Smart Structures and Systems, 1(4), 339–353. https://doi.org/10.12989/SSS.2005.1.4.339
dc.relationPavelko, V., Ozolinsh, I., Kuznetsov, S., & Pavelko, I. (2011). Structural health monitoring of aircraft structure by method of electromechanical impedance. Proc. of the VI International Workshop of NDT Experts , 223–239.
dc.relationPavelko, V. P., Kuznetsov, S., Ozolinsh, I., & Pavelko, I. (2014, October). Some applications of electromechanical impedance technology for SHM. Proceedings of 11th European Conference on Non-Destructive Testing.
dc.relationPeairs, D. M., Grisso, B. L., Margasahayam, R. N., Page, K. R., & Inman, D. J. (2004). Impedance-based health monitoring of space shuttle ground structures. Proc. SPIE 5394, Health Monitoring and Smart Nondestructive Evaluation of Structural and Biological Systems III, 5394, 99–107. https://doi.org/10.1117/12.539771
dc.relationPeairs, D. M., Park, G., & Inman, D. J. (2004). Improving Accessibility of the Impedance-Based Structural Health Monitoring Method. Journal of Intelligent Material Systems and Structures, 15(2), 139. https://doi.org/10.1177/1045389X04039914
dc.relationPereira, D. A., & Serpa, A. L. (2015). Bank of H∞ filters for sensor fault isolation in active controlled flexible structures. Mechanical Systems and Signal Processing, 60–61, 678–694. https://doi.org/10.1016/J.YMSSP.2015.01.036
dc.relationPurekar, A. S., & Pines, D. J. (2010). Damage Detection in Thin Composite Laminates Using Piezoelectric Phased Sensor Arrays and Guided Lamb Wave Interrogation. Journal of Intelligent Material Systems and Structures, 21(10), 995–1010. https://doi.org/10.1177/1045389X10372003
dc.relationRen, H., Chen, X., & Chen, Y. (2017). Structural Health Monitoring and Influence on Current Maintenance. In Reliability Based Aircraft Maintenance Optimization 112 and Applications (pp. 173–184). Academic Press. https://doi.org/10.1016/B978- 0-12-812668-4.00009-5
dc.relationRibeiro, M. I. (2004). Gaussian Probability Density Functions: Properties and Error Characterization. In ipac.caltech.edu.
dc.relationRosiek, M., Martowicz, A., Uhl, T., Stępiński, T., & Łukomski, T. (2010). Electromechanical impedance method for damage detection in mechanical structures. 11th IMEKO TC 10 Workshop on Smart Diagnostics of Structures, 18–20.
dc.relationRoss, S. M. (2021). Analysis of variance. In Introduction to Probability and Statistics for Engineers and Scientists (pp. 453–498). Academic Press. https://doi.org/10.1016/B978-0-12-824346-6.00019-3
dc.relationSamantaray, S. K., Mittal, S. K., Mahapatra, P., & Kumar, S. (2018). An impedance based structural health monitoring approach for looseness identification in bolted joint structure. Journal of Civil Structural Health Monitoring, 8(5), 809– 822. https://doi.org/10.1007/S13349-018-0307-2
dc.relationSirohi, J., & Chopra, I. (2000). Fundamental Understanding of Piezoelectric Strain Sensors. Journal of Intelligent Material Systems and Structures, 11(4), 246– 257. https://doi.org/10.1106/8BFB-GC8P-XQ47-YCQ0
dc.relationSparkfun electronics. (2014). Datasheet of Piezoelectric Sound Components. https://doi.org/10.1.28
dc.relationStaszewski, W. J., Mahzan, S., & Traynor, R. (2009). Health monitoring of aerospace composite structures – Active and passive approach. Composites Science and Technology, 69(11–12), 1678–1685. https://doi.org/10.1016/J.COMPSCITECH.2008.09.034
dc.relationSun, F. P., Chaudhry, Z. A., Rogers, C. A., Majmundar, M., & Liang, C. (1995). Automated real-time structure health monitoring via signature pattern recognition. Conference on Smart Materials and Structures, 2443, 236–247. https://doi.org/10.1117/12.208261
dc.relationTawie, R., & Lee, H. K. (2010). Monitoring the strength development in concrete by EMI sensing technique. Construction and Building Materials, 24(9), 1746–1753. https://doi.org/10.1016/J.CONBUILDMAT.2010.02.014
dc.relationTinoco, H. A., & Marulanda, D. (2014). A new index for damage identification in active beams with electromechanical impedance technique (EMI) approach to SHM. Proceedings of II International Conference on Advanced Mechatronics, Design, and Manufacturing Technology, 1–6.
dc.relationTinoco, H. A., Serpa, A. L., & Ramos, A. M. (2010). Numerical Study of the Effects of Bonding Layer Properties on Electrical Signatures of Piezoelectric Sensors. Mecánica Computacional, 29(86), 8391–8409.
dc.relationTseng, K. K. H., & Naidu, A. S. K. (2002). Non-parametric damage detection and characterization using smart piezoceramic material. Smart Materials and Structures, 11(3), 317. https://doi.org/10.1088/0964-1726/11/3/301
dc.relationTseng, K. K., & Wang, L. (2004). Smart piezoelectric transducers for in situ health monitoring of concrete. Smart Materials and Structures, 13(5), 1017. https://doi.org/10.1088/0964-1726/13/5/006
dc.relationUhl, T., Stepinski, T., & Staszewski, W. (2013). Introduction. In Advanced Structural Damage Detection: From Theory to Engineering Applications (pp. 1–15). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118536148.CH1
dc.relationWang, D., Zhang, J., & Zhu, H. (2015). Embedded electromechanical impedance and strain sensors for health monitoring of a concrete bridge. Shock and Vibration, 2015. https://doi.org/10.1155/2015/821395
dc.relationWatkins, A. J., & Kitcher, C. (2006). Electrical Installation Calculations. In Electrical Installation Calculations Volume 2 (6th ed.). Routledge. https://doi.org/10.4324/9780080460611
dc.relationWayne Kerr Electronics. (n.d.). Precision Impedance Analyzers Technical data sheet.
dc.relationWetherhold, R., Messer, M., & Patra, A. (2003). Optimization of Directionally Attached Piezoelectric Actuators. Journal of Engineering Materials and Technology, 125(2), 148–152. https://doi.org/10.1115/1.1555653
dc.relationXu, Y. G., & Liu, G. R. (2002). A Modified Electro-Mechanical Impedance Model of Piezoelectric Actuator-Sensors for Debonding Detection of Composite Patches. Journal of Intelligent Material Systems and Structures, 13(6), 389–396. https://doi.org/10.1177/104538902761696733
dc.relationYang, Y., Hu, Y., & Lu, Y. (2008). Sensitivity of PZT Impedance Sensors for Damage Detection of Concrete Structures. Sensors, 8(1), 327–346. https://doi.org/10.3390/S8010327
dc.relationYu, L., Pollock, P., Gresil, M., & Sutton, M. (2011). Progressive Damage Detection/Diagnosis on Composite Using Electromechanical Impedance Spectroscopy. ASME 2011 International Mechanical Engineering Congress and Exposition, 1, 255–262. https://doi.org/10.1115/IMECE2011-63914
dc.relationZagrai, A. N., & Giurgiutiu, V. (2001). Electro-Mechanical Impedance Method for Crack Detection in Thin Plates. Journal of Intelligent Material Systems and Structures, 12(10), 709–718. https://doi.org/10.1177/104538901320560355
dc.relationZimmerman, D. C., & Kaouk, M. (1994). Structural Damage Detection Using a Minimum Rank Update Theory. Journal of Vibration and Acoustics, 116(2), 222– 231. https://doi.org/10.1115/1.2930416
dc.rightsManifiesto (Manifestamos) en este documento la voluntad de autorizar a la Biblioteca Jorge Roa Martínez de la Universidad Tecnológica de Pereira la publicación en el Repositorio institucional (http://biblioteca.utp.edu.co), la versión electrónica de la OBRA titulada: ________________________________________________________________________________________________ ________________________________________________________________________________________________ ________________________________________________________________________________________________ La Universidad Tecnológica de Pereira, entidad académica sin ánimo de lucro, queda por lo tanto facultada para ejercer plenamente la autorización anteriormente descrita en su actividad ordinaria de investigación, docencia y publicación. La autorización otorgada se ajusta a lo que establece la Ley 23 de 1982. Con todo, en mi (nuestra) condición de autor (es) me (nos) reservo (reservamos) los derechos morales de la OBRA antes citada con arreglo al artículo 30 de
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject620 - Ingeniería y operaciones afines
dc.subject620 - Ingeniería y operaciones afines::624 - Ingeniería civil
dc.subjectIngeniería de estructuras
dc.subjectAnálisis espectral - Procesamiento de datos
dc.subjectProcesamiento electrónico de datos - Técnicas estructuradas
dc.subjectTransductores piezoeléctricos
dc.subjectImpedancia electromecánica
dc.subjectDistribuciones gaussianas
dc.titleIdentificación y localización de daños en estructuras activas con la técnica de la impedancia electromecánica (EMI) enfocada al monitoreo de la integridad estructural (SHM)
dc.typeTrabajo de grado - Maestría
dc.typehttp://purl.org/coar/resource_type/c_bdcc
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.typeText
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typeinfo:eu-repo/semantics/acceptedVersion


Este ítem pertenece a la siguiente institución