dc.contributor | Tinoco Navarro , Hector Andres | |
dc.creator | Marulanda Hurtado , Dairon José | |
dc.creator | Robledo Callejas , Leonardo | |
dc.date | 2023-03-14T19:44:49Z | |
dc.date | 2023-03-14T19:44:49Z | |
dc.date | 2022 | |
dc.date.accessioned | 2023-06-05T15:16:57Z | |
dc.date.available | 2023-06-05T15:16:57Z | |
dc.identifier | Universidad Tecnológica de Pereira | |
dc.identifier | Repositorio Institucional Universidad Tecnológica de Pereira | |
dc.identifier | https://repositorio.utp.edu.co/home | |
dc.identifier | https://hdl.handle.net/11059/14610 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/6645755 | |
dc.description | En esta tesis se presenta el uso de la técnica de impedancia electromecánica para la detección y localización de daños en estructuras activas bajo un enfoque de monitoreo estructural mediante pruebas experimentales. Dado que las señales obtenidas de las pruebas experimentales suelen presentar ruidos y grandes dispersiones, estas se homogenizan mediante las funciones de distribución normal, lo que permite estimar diferentes índices escalares para establecer la detección, cuantificación y localización de los daños cuando se comparan las señales capturadas de la estructura sin daño, denominada señal de referencia, con las de la estructura afectada por los daños, denominada señal de monitoreo. Se proponen tres pruebas experimentales en las que se inducen diferentes tipos de daño a las estructuras activas, y se usan transductores piezoeléctricos y un analizador de impedancia para detectar la presencia del daño, cuantificar su severidad y determinar su localización. En la primera prueba, los daños inducidos son marcas y perforaciones practicadas en el material de la estructura, con dimensiones controladas. La segunda prueba se realiza controlando dos tamaños para las perforaciones y cuatro distancias entre estas y el parche piezoeléctrico. Las mediciones de impedancia eléctrica son desacopladas tanto antes como después de inducir los daños en la estructura activa. En la última prueba, el daño estructural se formula como la pérdida de torque de apriete en uniones pernadas. Se encontró que los índices estadísticos usados son criterios adecuados para determinar la presencia del daño en la estructura, así como su severidad y su localización con respecto a la del transductor piezoeléctrico. Esto se concluye al observar las diferencias entre los índices calculados a partir de mediciones de impedancia eléctrica en la estructura intacta con respecto a las mediciones realizadas después de inducir daños en diferentes etapas y ubicaciones. | |
dc.description | This thesis presents the use of the electro-mechanical impedance technique for the detection and localization of damage in active structures under a structural monitoring approach by means of experimental tests. Since the signals obtained from experimental tests usually present noises and large dispersions, these are homogenized by means of normal distribution functions, which allows estimating different scalar indices to establish the detection, quantification and localization of damage when comparing the signals captured from the undamaged structure, called reference signal, with those from the structure affected by damage, called monitoring signal. Three experimental tests are proposed in which different types of damage are induced to active structures, and piezoelectric transducers and an impedance analyzer are used to detect the presence of damage, quantify its severity, and determine its location. In the first test, the induced damages are marks and holes drilled in the material of the structure, with controlled dimensions. The second test is performed by controlling two sizes for the perforations and four distances between the perforations and the piezoelectric patch. Electrical impedance measurements are decoupled both before and after inducing damage to the active structure. In the last test, structural damage is formulated as the loss of tightening torque in bolted joints. It was found that the statistical indices used are adequate criteria to determine the presence of damage in the structure, as well as its severity and its location with respect to that of the piezoelectric transducer. This is concluded by observing the differences between the indices calculated from electrical impedance measurements on the undamaged structure with respect to measurements made after inducing damage at different stages and locations. | |
dc.description | Maestría | |
dc.description | Magíster en Sistemas Automáticos de Producción | |
dc.description | CONTENIDO
CAPÍTULO 1 PRESENTACIÓN ............................................................................ 14
1.2 Justificación .......................................................................................... 16
1.3 Planteamiento del problema ................................................................. 17
1.4 Antecedentes ........................................................................................ 19
1.5 Objetivos ............................................................................................... 20
1.5.1 Objetivo general ............................................................................. 20
1.5.2 Objetivos específicos...................................................................... 21
1.6 Estructura de la tesis ............................................................................ 21
CAPÍTULO 2 IDENTIFICACIÓN DE DAÑOS EN PLACAS ACTIVAS CON ÍNDICES
BASADOS EN ELIPSES DE CONFIANZA GAUSSIANAS OBTENIDAS DE LA
ADMITANCIA ELECTROMECÁNICA ................................................................... 22
2.1 Introducción .......................................................................................... 22
2.2 Fundamentos teóricos........................................................................... 25
2.2.1 Impedancia electromecánica (EM) acoplada para transductores
piezoeléctricos .............................................................................................. 25
2.2.2 Índices de daño basados en una distribución gaussiana normal ... 29
2.2.3 Estimación de la línea base de daño .............................................. 32
2.2.4 Índices RMSD y MAPD para la técnica EMI ................................... 33
2.3 Montaje experimental ............................................................................ 35
2.4 Resultados y discusión ......................................................................... 37
2.4.1 Prueba 1: Identificación de daños superficiales con el índice EDI . 37
2.4.2 Prueba 2: Identificación de daños con diferentes índices (EDI, R M y
θ N
) 44
vii
2.4.3 Prueba 3: Identificación de daños a partir de una línea de base
probabilística ................................................................................................. 50
CAPÍTULO 3 DETECCIÓN DE DAÑOS EN PLACAS ACTIVAS MEDIANTE LA
TÉCNICA DE IMPEDANCIA ELECTROMECÁNICA BASADA EN MEDICIONES
DESACOPLADAS DE TRANSDUCTORES PIEZOELÉCTRICOS ....................... 56
3.1 Introducción .......................................................................................... 56
3.2 Fundamentos teóricos........................................................................... 60
3.2.1 Desacople de la impedancia electromecánica (EM) considerando un
circuito en paralelo ........................................................................................ 60
3.2.2 Índice Hr
basado en una elipse de confianza gaussiana .............. 63
3.3 Metodologías de detección de daños ................................................... 64
3.3.1 Metodología de identificación de daños usando la reactancia ( X ) 64
3.3.2 Metodología de localización de daños mediante la resistencia ( R )
67
3.4 Montaje experimental ............................................................................ 70
3.5 Resultados y discusión ......................................................................... 72
3.5.1 Identificación de los daños ............................................................. 72
3.5.2 Identificación y localización de daños ............................................ 79
CAPÍTULO 4 DETECCIÓN DE PÉRDIDA DE TORQUE EN UNIONES PERNADAS
USANDO LA TÉCNICA DE LA IMPEDANCIA ELECTROMECÁNICA .................. 89
4.1 Introducción .......................................................................................... 89
4.2 Fundamentos teóricos........................................................................... 91
4.2.1 Técnica de impedancia electromecánica........................................ 91
4.2.2 Rango de frecuencia ...................................................................... 91
viii
4.3 Índices de identificación de perdida de par o aflojamiento .................... 91
4.4 Montaje experimental ............................................................................ 92
4.5 Resultados y discusión ......................................................................... 96
CAPÍTULO 5 CONCLUSIONES .......................................................................... 102
PUBLICACIONES ............................................................................................... 104
REFERENCIAS ................................................................................................... 105
ANEXOS ............................................................................................................. 115 | |
dc.format | 121 Páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Universidad Tecnológica de Pereira | |
dc.publisher | Facultad de Ingenierías | |
dc.publisher | Pereira | |
dc.publisher | Maestría en Sistemas Automáticos de Producción | |
dc.relation | Adams, D. E. (2007). Health Monitoring of Structural Materials and Components: Methods with Applications. In Health Monitoring of Structural Materials and Components: Methods with Applications. https://doi.org/10.1002/9780470511589 | |
dc.relation | Ai, D., Zhu, H., Luo, H., & Yang, J. (2014). An effective electromechanical impedance technique for steel structural health monitoring. Construction and Building Materials, 73, 97–104. https://doi.org/10.1016/J.CONBUILDMAT.2014.09.029 | |
dc.relation | Amerini, F., & Meo, M. (2011). Structural health monitoring of bolted joints using linear and nonlinear acoustic/ultrasound methods. Structural Health Monitoring, 10(6), 659–672. https://doi.org/10.1177/1475921710395810 | |
dc.relation | Analog Devices. (2014). Datasheet AD5933. | |
dc.relation | Annamdas, V. G. M., & Soh, C. K. (2010). Application of Electromechanical Impedance Technique for Engineering Structures: Review and Future Issues. Journal of Intelligent Material Systems and Structures, 21(1), 41–59. https://doi.org/10.1177/1045389X09352816 | |
dc.relation | Annamdas, V. G. M., Yang, Y., & Soh, C. K. (2007). Influence of loading on the electromechanical admittance of piezoceramic transducers. Smart Materials and Structures, 16(5), 1888. https://doi.org/10.1088/0964-1726/16/5/045 | |
dc.relation | Argatov, I., & Sevostianov, I. (2010). Health monitoring of bolted joints via electrical conductivity measurements. International Journal of Engineering Science, 48(10), 874–887. https://doi.org/10.1016/J.IJENGSCI.2010.05.009 | |
dc.relation | Baptista, F. G., Filho, J. V., & Inman, D. J. (2011). Real-time multi-sensors measurement system with temperature effects compensation for impedance based structural health monitoring. Structural Health Monitoring, 11(2), 173– 186. https://doi.org/10.1177/1475921711414234 | |
dc.relation | Berger, V. W., & Zhou, Y. (2014). Kolmogorov–Smirnov Test: Overview. Wiley StatsRef: Statistics Reference Online. https://doi.org/10.1002/9781118445112.STAT06558 | |
dc.relation | Berney, H., & O’riordan, J. J. (2008). Impedance measurement monitors blood coagulation. Analog Dialogue, 42(3), 42–48. | |
dc.relation | Bhalla, S., & Soh, C. K. (2004a). Structural Health Monitoring by Piezo-Impedance Transducers. I: Modeling. Journal of Aerospace Engineering, 17(4), 154–165. https://doi.org/10.1061/(ASCE)0893-1321(2004)17:4(154) | |
dc.relation | Bhalla, S., & Soh, C. K. (2004b). Structural Health Monitoring by Piezo-Impedance Transducers. II: Applications. Journal of Aerospace Engineering, 17(4), 166– 175. https://doi.org/10.1061/(ASCE)0893-1321(2004)17:4(166) | |
dc.relation | Chen, W. Q., & Yan, W. (2010). Structural health monitoring using high-frequency electromechanical impedance signatures. Advances in Civil Engineering, 2010. https://doi.org/10.1155/2010/429148 | |
dc.relation | Chou, J. H., & Ghaboussi, J. (2001). Genetic algorithm in structural damage detection. Computers & Structures, 79(14), 1335–1353. https://doi.org/10.1016/S0045-7949(01)00027-X | |
dc.relation | Chou, J. Y., & Chang, C. M. (2022). Low-story damage detection of buildings using deep neural network from frequency phase angle differences within a low frequency band. Journal of Building Engineering, 55, 104692. https://doi.org/10.1016/J.JOBE.2022.104692 | |
dc.relation | Christensen, R. (1997). Log-Linear Models and Logistic Regression. In Log-Linear Models and Logistic Regression (2nd ed.). Springer New York. https://doi.org/10.1007/B97647 | |
dc.relation | Cuc, A., & Giurgiutiu, V. (2004). Disbond detection in adhesively bonded structures using piezoelectric wafer active sensors. SPIE 5394, Health Monitoring and Smart Nondestructive Evaluation of Structural and Biological Systems III, 5394, 66–77. https://doi.org/10.1117/12.540358 | |
dc.relation | Dimitrova, D. S., Kaishev, V. K., & Tan, S. (2020). Computing the Kolmogorov Smirnov Distribution When the Underlying CDF is Purely Discrete, Mixed, or Continuous. Journal of Statistical Software, 95, 1–42. https://doi.org/10.18637/JSS.V095.I10 | |
dc.relation | Doebling, S. W. S., Farrar, C. R. C., Prime, M. B. M., & Shevitz, D. W. D. (1996). Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review. In Los Alamos National Laboratory. https://doi.org/10.2172/249299 | |
dc.relation | Draper, N. R., & Smith, H. (2014). Applied Regression Analysis (3rd ed.). Wiley | |
dc.relation | Ferreira, J., Seoane, F., Ansede, A., & Bragos, R. (2010). AD5933-based spectrometer for electrical bioimpedance applications. Journal of Physics: Conference Series, 224(1), 012011. https://doi.org/10.1088/1742- 6596/224/1/012011 | |
dc.relation | Fu, Z.-F., & He, J. H. (2001). Modal analysis (Z.-F. Fu & J. H. He (eds.); 1st ed.). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-7506-5079-3.X5000-1 | |
dc.relation | Giurgiutiu, V. (2014a). Structural health monitoring with piezoelectric wafer active sensors (V. Giurgiutiu (ed.); 2nd ed.) | |
dc.relation | Giurgiutiu, V. (2014b). High-Frequency Vibration SHM with PWAS Modal Sensors – the Electromechanical Impedance Method. In V. Giurgiutiu (Ed.), Structural Health Monitoring with Piezoelectric Wafer Active Sensors (pp. 509–572). Academic Press. https://doi.org/10.1016/B978-0-12-418691-0.00011-3 | |
dc.relation | Giurgiutiu, V. (2014c). Introduction. In V. Giurgiutiu (Ed.), Structural Health Monitoring with Piezoelectric Wafer Active Sensors (2nd ed., pp. 1–19). Academic Press. https://doi.org/10.1016/B978-0-12-418691-0.00001-0 | |
dc.relation | Giurgiutiu, V., & Kropas-Hughes, C. V. (2003). Comparative study of neural-network damage detection from a statistical set of electro-mechanical impedance spectra. NDE for Health Monitoring and Diagnostics, 108–119. https://doi.org/10.1117/12.484050 | |
dc.relation | Giurgiutiu, V., Reynolds, A., & Rogers, C. A. (1999). Experimental Investigation of E/M Impedance Health Monitoring for Spot-Welded Structural Joints. Journal of Intelligent Material Systems and Structures, 10(10), 802–812. https://doi.org/10.1106/N0J5-6UJ2-WLGV-Q8MC | |
dc.relation | Giurgiutiu, V., & Rogers, C. A. (1997, September). Electro-Mechanical (E/M) Impedance Method for Structural Health Monitoring and Non-Destructive Evaluation. International Workshop on Structural Health Monitoring, Stanford University, CA. | |
dc.relation | Giurgiutiu, V., & Zagrai, A. (2005). Damage Detection in Thin Plates and Aerospace Structures with the Electro-Mechanical Impedance Method. Structural Health Monitoring, 4(2), 99–118. https://doi.org/10.1177/1475921705049752 | |
dc.relation | Giurgiutiu, V., Zagrai, A., & Bao, J. J. (2016). Piezoelectric Wafer Embedded Active Sensors for Aging Aircraft Structural Health Monitoring. Structural Health Monitoring, 1(1), 41–61. https://doi.org/10.1177/147592170200100104 | |
dc.relation | Gresil, M., Yu, L., Giurgiutiu, V., & Sutton, M. (2012). Predictive modeling of 108 electromechanical impedance spectroscopy for composite materials. Structural Health Monitoring, 11(6), 671–683. https://doi.org/10.1177/1475921712451954 | |
dc.relation | Guarino, J., Hamilton, R., & Fischer, W. (2009). Acoustic detection of bolt detorquing in structures. Proceedings of Meetings on Acoustics, 6(1), 065002. https://doi.org/10.1121/1.3167485 | |
dc.relation | Hamdan, A., Sultan, M. T. H., & Mustapha, F. (2019). Structural health monitoring of biocomposites, fibre-reinforced composites, and hybrid composite. In Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites (pp. 227–242). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102291-7.00011-3 | |
dc.relation | Hewlett Packard. (1996). HP LF 4192A: Impedance Analyzer Operation Manual... - Google Académico. | |
dc.relation | Hu, X., Zhu, H., & Wang, D. (2014). A Study of Concrete Slab Damage Detection Based on the Electromechanical Impedance Method. Sensors, 14(10), 19897– 19909. https://doi.org/10.3390/S141019897 | |
dc.relation | Huang, Y. H., Liu, L., Yeung, T. W., & Hung, Y. Y. (2009). Real-time monitoring of clamping force of a bolted joint by use of automatic digital image correlation. Optics & Laser Technology, 41(4), 408–414. https://doi.org/10.1016/J.OPTLASTEC.2008.08.010 | |
dc.relation | Inman, D. J., Farrar, C. R., Lopes, V., & Steffen, V. (2005). Damage Prognosis: For Aerospace, Civil and Mechanical Systems. In D. J. Inman, C. R. Farrar, V. Lopes Junior, & V. Steffen Junior (Eds.), Damage Prognosis: For Aerospace, Civil and Mechanical Systems. John Wiley and Sons. https://doi.org/10.1002/0470869097 | |
dc.relation | Kessler, S. S., & Spearing, S. M. (2002). Design of a piezoelectric-based structural health monitoring system for damage detection in composite materials. In P. Davis (Ed.), Smart Structures and Materials 2002: Smart Structures and Integrated Systems (Vol. 4701, pp. 86–96). SPIE. https://doi.org/10.1117/12.474649 | |
dc.relation | Keysight Technologies. (2020). Impedance Measurement Handbook. | |
dc.relation | Keysight Technologies. (2021). A data sheet of Agilent E4980A precision LCRmeter. | |
dc.relation | Khadour, A., & Waeytens, J. (2018). Monitoring of concrete structures with optical fiber sensors. In Eco-efficient Repair and Rehabilitation of Concrete Infrastructures (pp. 97–121). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102181-1.00005-8 | |
dc.relation | Khomenko, A., Koricho, E. G., Haq, M., & Cloud, G. L. (2016). Bolt tension monitoring with reusable fiber Bragg-grating sensors. Journal of Strain Analysis for Engineering Design, 51(2), 101–108. https://doi.org/10.1177/0309324715598265 | |
dc.relation | Liang, C., Sun, F. P., & Rogers, C. A. (1994a). An Impedance Method for Dynamic Analysis of Active Material Systems. Journal of Vibration and Acoustics, 116(1), 120–128. https://doi.org/10.1115/1.2930387 | |
dc.relation | Liang, C., Sun, F. P., & Rogers, C. A. (1994b). Coupled Electro-Mechanical Analysis of Adaptive Material Systems — Determination of the Actuator Power Consumption and System Energy Transfer. Journal of Intelligent Material Systems and Structures, 5(1), 12–20. https://doi.org/10.1177/1045389X9400500102 | |
dc.relation | Liang, C., Sun, F., & Rogers, C. A. (1996). Electro-mechanical impedance modeling of active material systems. Smart Materials and Structures, 5(2), 171. https://doi.org/10.1088/0964-1726/5/2/006 | |
dc.relation | Liang, Y., Feng, Q., Li, D., & Cai, S. (2018). Loosening monitoring of a threaded pipe connection using the electro-mechanical impedance technique—experimental and numerical studies. Sensors (Switzerland), 18(11). https://doi.org/10.3390/s18113699 | |
dc.relation | Lilliefors, H. W. (1967). On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown. Journal of the American Statistical Association, 62(318), 399–402. https://doi.org/10.1080/01621459.1967.10482916 | |
dc.relation | Lingyu, Y., & Giurgiutiu, V. (2008). Multi-mode Damage Detection Methods with Piezoelectric Wafer Active Sensors. Journal of Intelligent Material Systems and Structures, 20(11), 1329–1341. https://doi.org/10.1177/1045389X08096665 | |
dc.relation | Liu, S. C., Tomizuka, M., & Ulsoy, G. (2006). Strategic issues in sensors and smart structures. Structural Control and Health Monitoring, 13(6), 946–957. https://doi.org/10.1002/STC.88 | |
dc.relation | Madgav, A. V. G., & Soh, C. K. (2007). Uniplexing and Multiplexing of PZT Transducers for Structural Health Monitoring. Journal of Intelligent Material Systems and Structures, 19(4), 457–467. https://doi.org/10.1177/1045389X06075523 | |
dc.relation | Malinowski, P., Wandowski, T., & Ostachowicz, W. (2015). The use of electromechanical impedance conductance signatures for detection of weak adhesive bonds of carbon fibre–reinforced polymer. Structural Health Monitoring, 14(4), 332–344. https://doi.org/10.1177/1475921715586625 | |
dc.relation | Martowicz, A., & Rosiek, M. (2013). Electromechanical Impedance Method. In Advanced Structural Damage Detection: From Theory to Engineering Applications (pp. 141–176). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118536148.CH6 | |
dc.relation | Miller Jr, R. G. (1997). Beyond ANOVA: Basics of Applied Statistics. CRC Press. | |
dc.relation | Moharana, S., & Bhalla, S. (2015). Influence of adhesive bond layer on power and energy transduction efficiency of piezo-impedance transducer. Journal of Intelligent Material Systems and Structures, 26(3), 247–259. https://doi.org/10.1177/1045389X14523858 | |
dc.relation | Na, W. S. (2022). A portable bolt-loosening detection system with piezoelectric based nondestructive method and artificial neural networks. Structural Health Monitoring, 21(2), 683–694. https://doi.org/10.1177/14759217211008619 | |
dc.relation | Naidu, A. S. K. (2004). Structural damage identification with admittance signatures of smart PZT transducers. Nanyang Technological University. | |
dc.relation | Ng, C. T., & Veidt, M. (2009). A Lamb-wave-based technique for damage detection in composite laminates. Smart Materials and Structures, 18(7), 074006. https://doi.org/10.1088/0964-1726/18/7/074006 | |
dc.relation | Olivier Cherrier , Valérie Budinger , Frédéric Lachaud, J. M. P. S. (2013). Smart monitoring of aeronautical composites plates based on electromechanical impedance measurements and artificial neural networks. Engineering Structures, 794–804 | |
dc.relation | Overly, T. G., Park, G., Farinholt, K. M., & Farrar, C. R. (2009). Piezoelectric active sensor diagnostics and validation using instantaneous baseline data. IEEE Sensors Journal, 9(11), 1414–1421. https://doi.org/10.1109/JSEN.2009.2018351 | |
dc.relation | Pandey, A. K., Biswas, M., & Samman, M. M. (1991). Damage detection from changes in curvature mode shapes. Journal of Sound and Vibration, 145(2), 321–332. https://doi.org/10.1016/0022-460X(91)90595-B | |
dc.relation | Panigrahi, R., Bhalla, S., & Gupta, A. (2010). A low-cost variant of electro mechanical impedance (EMI) technique for structural health monitoring. Experimental Techniques, 34(2), 25–29. https://doi.org/10.1111/J.1747- 1567.2009.00524.X | |
dc.relation | Park, G., Cudney, H. H., & Inman, D. J. (2000). Impedance-Based Health Monitoring of Civil Structural Components. Journal of Infrastructure Systems, 6(4), 153– 160. https://doi.org/10.1061/(ASCE)1076-0342(2000)6:4(153) | |
dc.relation | Park, G., & Inman, D. J. (2005). Impedance-Based Structural Health Monitoring. In Damage Prognosis: For Aerospace, Civil and Mechanical Systems (pp. 275– 292). John Wiley & Sons, Ltd. https://doi.org/10.1002/0470869097.CH13 | |
dc.relation | Park, G., Sohn, H., Farrar, C. R., & Inman, D. J. (n.d.). Overview of Piezoelectric Impedance-Based Health Monitoring and Path Forward. | |
dc.relation | Park, G., Sohn, H., Farrar, C. R., & Inman, D. J. (2003). Overview of piezoelectric impedance-based health monitoring and path forward. Shock and Vibration Digest, 35(6), 451–463. https://doi.org/10.1177/05831024030356001 | |
dc.relation | Park, S., Yun, C.-B., Roh, Y., & Lee, J.-J. (2005). Health monitoring of steel structures using impedance of thickness modes at PZT patches. Smart Structures and Systems, 1(4), 339–353. https://doi.org/10.12989/SSS.2005.1.4.339 | |
dc.relation | Pavelko, V., Ozolinsh, I., Kuznetsov, S., & Pavelko, I. (2011). Structural health monitoring of aircraft structure by method of electromechanical impedance. Proc. of the VI International Workshop of NDT Experts , 223–239. | |
dc.relation | Pavelko, V. P., Kuznetsov, S., Ozolinsh, I., & Pavelko, I. (2014, October). Some applications of electromechanical impedance technology for SHM. Proceedings of 11th European Conference on Non-Destructive Testing. | |
dc.relation | Peairs, D. M., Grisso, B. L., Margasahayam, R. N., Page, K. R., & Inman, D. J. (2004). Impedance-based health monitoring of space shuttle ground structures. Proc. SPIE 5394, Health Monitoring and Smart Nondestructive Evaluation of Structural and Biological Systems III, 5394, 99–107. https://doi.org/10.1117/12.539771 | |
dc.relation | Peairs, D. M., Park, G., & Inman, D. J. (2004). Improving Accessibility of the Impedance-Based Structural Health Monitoring Method. Journal of Intelligent Material Systems and Structures, 15(2), 139. https://doi.org/10.1177/1045389X04039914 | |
dc.relation | Pereira, D. A., & Serpa, A. L. (2015). Bank of H∞ filters for sensor fault isolation in active controlled flexible structures. Mechanical Systems and Signal Processing, 60–61, 678–694. https://doi.org/10.1016/J.YMSSP.2015.01.036 | |
dc.relation | Purekar, A. S., & Pines, D. J. (2010). Damage Detection in Thin Composite Laminates Using Piezoelectric Phased Sensor Arrays and Guided Lamb Wave Interrogation. Journal of Intelligent Material Systems and Structures, 21(10), 995–1010. https://doi.org/10.1177/1045389X10372003 | |
dc.relation | Ren, H., Chen, X., & Chen, Y. (2017). Structural Health Monitoring and Influence on Current Maintenance. In Reliability Based Aircraft Maintenance Optimization 112 and Applications (pp. 173–184). Academic Press. https://doi.org/10.1016/B978- 0-12-812668-4.00009-5 | |
dc.relation | Ribeiro, M. I. (2004). Gaussian Probability Density Functions: Properties and Error Characterization. In ipac.caltech.edu. | |
dc.relation | Rosiek, M., Martowicz, A., Uhl, T., Stępiński, T., & Łukomski, T. (2010). Electromechanical impedance method for damage detection in mechanical structures. 11th IMEKO TC 10 Workshop on Smart Diagnostics of Structures, 18–20. | |
dc.relation | Ross, S. M. (2021). Analysis of variance. In Introduction to Probability and Statistics for Engineers and Scientists (pp. 453–498). Academic Press. https://doi.org/10.1016/B978-0-12-824346-6.00019-3 | |
dc.relation | Samantaray, S. K., Mittal, S. K., Mahapatra, P., & Kumar, S. (2018). An impedance based structural health monitoring approach for looseness identification in bolted joint structure. Journal of Civil Structural Health Monitoring, 8(5), 809– 822. https://doi.org/10.1007/S13349-018-0307-2 | |
dc.relation | Sirohi, J., & Chopra, I. (2000). Fundamental Understanding of Piezoelectric Strain Sensors. Journal of Intelligent Material Systems and Structures, 11(4), 246– 257. https://doi.org/10.1106/8BFB-GC8P-XQ47-YCQ0 | |
dc.relation | Sparkfun electronics. (2014). Datasheet of Piezoelectric Sound Components. https://doi.org/10.1.28 | |
dc.relation | Staszewski, W. J., Mahzan, S., & Traynor, R. (2009). Health monitoring of aerospace composite structures – Active and passive approach. Composites Science and Technology, 69(11–12), 1678–1685. https://doi.org/10.1016/J.COMPSCITECH.2008.09.034 | |
dc.relation | Sun, F. P., Chaudhry, Z. A., Rogers, C. A., Majmundar, M., & Liang, C. (1995). Automated real-time structure health monitoring via signature pattern recognition. Conference on Smart Materials and Structures, 2443, 236–247. https://doi.org/10.1117/12.208261 | |
dc.relation | Tawie, R., & Lee, H. K. (2010). Monitoring the strength development in concrete by EMI sensing technique. Construction and Building Materials, 24(9), 1746–1753. https://doi.org/10.1016/J.CONBUILDMAT.2010.02.014 | |
dc.relation | Tinoco, H. A., & Marulanda, D. (2014). A new index for damage identification in active beams with electromechanical impedance technique (EMI) approach to SHM. Proceedings of II International Conference on Advanced Mechatronics, Design, and Manufacturing Technology, 1–6. | |
dc.relation | Tinoco, H. A., Serpa, A. L., & Ramos, A. M. (2010). Numerical Study of the Effects of Bonding Layer Properties on Electrical Signatures of Piezoelectric Sensors. Mecánica Computacional, 29(86), 8391–8409. | |
dc.relation | Tseng, K. K. H., & Naidu, A. S. K. (2002). Non-parametric damage detection and characterization using smart piezoceramic material. Smart Materials and Structures, 11(3), 317. https://doi.org/10.1088/0964-1726/11/3/301 | |
dc.relation | Tseng, K. K., & Wang, L. (2004). Smart piezoelectric transducers for in situ health monitoring of concrete. Smart Materials and Structures, 13(5), 1017. https://doi.org/10.1088/0964-1726/13/5/006 | |
dc.relation | Uhl, T., Stepinski, T., & Staszewski, W. (2013). Introduction. In Advanced Structural Damage Detection: From Theory to Engineering Applications (pp. 1–15). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118536148.CH1 | |
dc.relation | Wang, D., Zhang, J., & Zhu, H. (2015). Embedded electromechanical impedance and strain sensors for health monitoring of a concrete bridge. Shock and Vibration, 2015. https://doi.org/10.1155/2015/821395 | |
dc.relation | Watkins, A. J., & Kitcher, C. (2006). Electrical Installation Calculations. In Electrical Installation Calculations Volume 2 (6th ed.). Routledge. https://doi.org/10.4324/9780080460611 | |
dc.relation | Wayne Kerr Electronics. (n.d.). Precision Impedance Analyzers Technical data sheet. | |
dc.relation | Wetherhold, R., Messer, M., & Patra, A. (2003). Optimization of Directionally Attached Piezoelectric Actuators. Journal of Engineering Materials and Technology, 125(2), 148–152. https://doi.org/10.1115/1.1555653 | |
dc.relation | Xu, Y. G., & Liu, G. R. (2002). A Modified Electro-Mechanical Impedance Model of Piezoelectric Actuator-Sensors for Debonding Detection of Composite Patches. Journal of Intelligent Material Systems and Structures, 13(6), 389–396. https://doi.org/10.1177/104538902761696733 | |
dc.relation | Yang, Y., Hu, Y., & Lu, Y. (2008). Sensitivity of PZT Impedance Sensors for Damage Detection of Concrete Structures. Sensors, 8(1), 327–346. https://doi.org/10.3390/S8010327 | |
dc.relation | Yu, L., Pollock, P., Gresil, M., & Sutton, M. (2011). Progressive Damage Detection/Diagnosis on Composite Using Electromechanical Impedance Spectroscopy. ASME 2011 International Mechanical Engineering Congress and Exposition, 1, 255–262. https://doi.org/10.1115/IMECE2011-63914 | |
dc.relation | Zagrai, A. N., & Giurgiutiu, V. (2001). Electro-Mechanical Impedance Method for Crack Detection in Thin Plates. Journal of Intelligent Material Systems and Structures, 12(10), 709–718. https://doi.org/10.1177/104538901320560355 | |
dc.relation | Zimmerman, D. C., & Kaouk, M. (1994). Structural Damage Detection Using a Minimum Rank Update Theory. Journal of Vibration and Acoustics, 116(2), 222– 231. https://doi.org/10.1115/1.2930416 | |
dc.rights | Manifiesto (Manifestamos) en este documento la voluntad de autorizar a la Biblioteca Jorge Roa Martínez de la Universidad Tecnológica de Pereira la publicación en el Repositorio institucional (http://biblioteca.utp.edu.co), la versión electrónica de la OBRA titulada: ________________________________________________________________________________________________ ________________________________________________________________________________________________ ________________________________________________________________________________________________ La Universidad Tecnológica de Pereira, entidad académica sin ánimo de lucro, queda por lo tanto facultada para ejercer plenamente la autorización anteriormente descrita en su actividad ordinaria de investigación, docencia y publicación. La autorización otorgada se ajusta a lo que establece la Ley 23 de 1982. Con todo, en mi (nuestra) condición de autor (es) me (nos) reservo (reservamos) los derechos morales de la OBRA antes citada con arreglo al artículo 30 de | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | 620 - Ingeniería y operaciones afines | |
dc.subject | 620 - Ingeniería y operaciones afines::624 - Ingeniería civil | |
dc.subject | Ingeniería de estructuras | |
dc.subject | Análisis espectral - Procesamiento de datos | |
dc.subject | Procesamiento electrónico de datos - Técnicas estructuradas | |
dc.subject | Transductores piezoeléctricos | |
dc.subject | Impedancia electromecánica | |
dc.subject | Distribuciones gaussianas | |
dc.title | Identificación y localización de daños en estructuras activas con la técnica de la impedancia electromecánica (EMI) enfocada al monitoreo de la integridad estructural (SHM) | |
dc.type | Trabajo de grado - Maestría | |
dc.type | http://purl.org/coar/resource_type/c_bdcc | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/masterThesis | |
dc.type | info:eu-repo/semantics/acceptedVersion | |