dc.contributorSalazar Isaza, Harold
dc.creatorDelgado Ramos, Sofía
dc.date2023-02-03T19:17:27Z
dc.date2023-02-03T19:17:27Z
dc.date2022
dc.date.accessioned2023-06-05T15:16:55Z
dc.date.available2023-06-05T15:16:55Z
dc.identifierUniversidad Tecnológica de Pereira
dc.identifierRepositorio Institucional Universidad Tecnológica de Pereira
dc.identifierhttps://repositorio.utp.edu.co/home
dc.identifierhttps://hdl.handle.net/11059/14490
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6645749
dc.descriptionEn el planeamiento de los sistemas energéticos existen parámetros externos sujetos a variaciones que afectan las decisiones que se deben tomar para su operación, como son los afluentes que alimentan a cada embalse de las centrales hidroeléctricas o los costos de inyección del gas natural al sistema energético, entre otros. El enfoque estocástico permite que la operación se realice de la mejor manera, independientemente de los valores que tomen los parámetros mencionados anteriormente, y es por esto por lo que la evaluación estocástica es una herramienta útil para abordar el planeamiento de los sistemas energéticos. En la actualidad, la recuperación de la demanda de energía eléctrica, producto de la crisis sanitaria y los conflictos bélicos, afectan de manera significativa el planeamiento de la operación de los sistemas energéticos al existir la posibilidad de tener variaciones altas e inesperadas, por lo que resulta relevante analizar distintos escenarios de esta recuperación para que se asegure que el sistema opere de forma eficiente trayendo consigo beneficios económicos y suficiencia energética. En este orden de ideas, se requiere contar con una política óptima que determine la manera en que se debe evaluar el conjunto de escenarios probables y, además, introduzca elementos que beneficien la gestión de la incertidumbre proveniente de diversas fuentes. Por consiguiente, en esta investigación se presentan los almacenamientos de energía estacional y el análisis estocástico, como una solución atractiva para mitigar el efecto de las posibles eventualidades en la demanda y el costo del gas natural.
dc.descriptionIn the planning of energy systems there are external parameters subject to variations that affect the decisions that must be made for their operation, such as the affluents that feed the hydroelectric power station reservoirs and the injection costs of the natural gas to the system, among others. The stochastic approach allows that the operation is carried out in the best way, regardless of the values that the mentioned parameters take, and that is why the stochastic evaluation is a useful tool to address the planning of energy systems. Currently, the recovery of the demand for electrical energy, because of the health crisis, and armed conflicts, have a significant effect on the planning of the operation of energy systems as there is the possibility of having high and unexpected variations, so it is relevant to analyze different scenarios of this recovery so that it is ensured that the system operates efficiently, bringing economic benefits and energy sufficiency. In this order of ideas, it is necessary to have an optimal policy that determines the way in which the set of probable scenarios must be evaluated and, in addition, introduce elements that protect the system against the variations that the demand for electrical energy may have in the medium term during the economic recovery. Therefore, in this research, seasonal energy storage and a stochastic analysis are presented as an attractive solution to mitigate the effect of possible eventualities in electric demand and natural gas prices.
dc.descriptionPregrado
dc.descriptionMagíster en Ingeniería Eléctrica
dc.descriptionContenido Agradecimientos.............................................................................................................................. 5 Resumen.......................................................................................................................................... 6 Índice de Figuras................................................................................................................................. 8 Índice de Tablas .................................................................................................................................. 9 1 Introducción .............................................................................................................................. 10 1.1. Planteamiento y justificación del problema .......................................................................... 10 1.2. Estado del arte ....................................................................................................................... 12 2 Marco conceptual ...................................................................................................................... 19 2.1 Enfoque estocástico............................................................................................................... 19 2.2 Modelo matemático............................................................................................................... 22 2.1 Estrategia de análisis............................................................................................................. 26 3 Resultados................................................................................................................................. 28 3.1 Sistema de prueba.................................................................................................................. 28 3.2 Resultados numéricos............................................................................................................ 32 3.2.1 Sin existencia de UGS............................................................................................... 33 3.2.2 Con existencia de UGS ............................................................................................. 39 4 Conclusiones y Trabajos Futuros.............................................................................................. 53 4.1. Conclusiones......................................................................................................................... 53 4.2. Trabajos Futuros.................................................................................................................... 54 5 Referencias................................................................................................................................ 55
dc.format59 Páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Tecnológica de Pereira
dc.publisherFacultad de Ingenierías
dc.publisherPereira
dc.publisherMaestría en Ingeniería Eléctrica
dc.relation[1] A. Quelhas E. il J. D. McCalley and . M. Ryan “A multiperiod eneralized network flow model of the U.S. integrated energy system: Part I - Model description ” IEEE Transactions on Power Systems, vol. 22, no. 2, pp. 829–836, May 2007, doi: 10.1109/TPWRS.2007.894844.
dc.relation[2] L. Bai . Li . Cui . Jian . un and J. Zhu “ nterval optimization ased operatin strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty ” Appl Energy, vol. 167, pp. 270–279, Apr. 2016, doi: 10.1016/j.apenergy.2015.10.119
dc.relation[3] X. an . Cui . Yuan J. an and . Jian “Distri utionally-robust chance constrained and interval optimization for integrated electricity and natural gas systems optimal power flow with wind uncertainties ” Appl Energy, vol. 252, Oct. 2019, doi: 10.1016/j.apenergy.2019.113420.
dc.relation[4] . Li M. Eremia and M. hahidehpour “ nterdependency of natural as network and power system security ” IEEE Transactions on Power Systems, vol. 23, no. 4, pp. 1817–1824, 2008, doi: 10.1109/TPWRS.2008.2004739.
dc.relation[5] . . Kanelakis . . Biskas D. . Chatzi iannis and A. . Bakirtzis “A tochastic wo- ta e Model for the nte rated chedulin of the Electric and atural as ystems ” IEEE Open Access Journal of Power and Energy, vol. 7, pp. 453–466, 2020, doi: 10.1109/OAJPE.2020.3030193.
dc.relation[6] J. C. Unsihuay, W. Marangon-Lima and A. C. Z. de ouza “ hort-Term Operation Planning of nte rated ydrothermal and atural as ystems ” in 2007 IEEE Lausanne Power Tech, 2007, pp. 1410–1416.
dc.relation[8] L. Tang and Y.-Q. Bao “Electricity as nte rated Ener y ystem chedulin Model Considering Uncertainties and Multi-stora e of Both Electricity and as ystems ” in 2020 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), 2020, pp. 1–5
dc.relation[9] A. Ramos and . Cerisola “Optimización Estocástica ” Madrid . Online . Availa le www.doi.icai.upcomillas.es[http://www.doi.icai.upcomillas.es/simio/intro.htm]
dc.relation[10] M. Qadrdan, J. Wu . Jenkins and J. Ekanayake “Operatin strate ies for a inte rated as and electricity network considerin the uncertainty in wind power forecasts ” IEEE Trans Sustain Energy, vol. 5, no. 1, pp. 128–138, Jan. 2014, doi: 10.1109/TSTE.2013.2274818
dc.relation[11] A. Ala dulwaha A. A usorrah X. Zhan and M. hahidehpour “Coordination of Interdependent Natural Gas and Electricity Infrastructures for Firming the Variability of Wind Energy in Stochastic Day-Ahead chedulin ” IEEE Trans Sustain Energy, vol. 6, no. 2, pp. 606–615, Apr. 2015, doi: 10.1109/TSTE.2015.2399855.
dc.relation[12] . Chen K. Zen C. Don . u Z. en and Q. Chen “ eneration schedulin considerin natural as stora e and uncertainty ” in 2017 IEEE Manchester PowerTech, Powertech 2017, Jul. 2017. doi: 10.1109/PTC.2017.7980969.
dc.relation[13] L. Wu and M. hahidehpour “Optimal coordination of stochastic hydro and natural as supplies in midterm operation of power systems ” IET Generation, Transmission and Distribution, vol. 5, no. 5, pp. 577–587, May 2011, doi: 10.1049/iet-gtd.2010.0215.
dc.relation[14] . Kamalinia L. Wu and M. hahidehpour “ tochastic midterm coordination of hydro and natural as flexi ilities for wind ener y inte ration ” IEEE Trans Sustain Energy, vol. 5, no. 4, pp. 1070–1079, Oct. 2014, doi: 10.1109/TSTE.2014.2326821.
dc.relation[15] D. M. O. Esteybar, R. G. Rubio-Barros and A. ar as “Lar e stora e facilities valuation in inte rated plannin of natural as and power systems ” in 2016 IEEE PES Transmission and Distribution Conference and Exposition-Latin America, PES T and D-LA 2016, Jan. 2017. doi: 10.1109/TDC-LA.2016.7805668.
dc.relation[16] . Din Y. u and Z. Bie “Multi-stage stochastic programming with nonanticipativity constraints for expansion of com ined power and natural as systems ” IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 317–328, Jan. 2018, doi: 10.1109/TPWRS.2017.2701881.
dc.relation[17] C. uan Q. D n . Qian X. Chen and X. Chen “Ro ust lannin Method for nte rated Ener y ystems with the Consideration of multiple ener y uncertainties ” in iSPEC 2020 - Proceedings: IEEE Sustainable Power and Energy Conference: Energy Transition and Energy Internet, Nov. 2020, pp. 1499–1504. doi: 10.1109/iSPEC50848.2020.9351071.
dc.relation[18] B. Li C. Wan and . hen “ he mpact Analysis of the Multi-Energy Storage in the Integrated Energy System Planning Considering Uncertain Wind Power ” in 2020 IEEE Industry Applications Society Annual Meeting, IAS 2020, Oct. 2020. doi: 10.1109/IAS44978.2020.9334767.
dc.relation[19] C. A. aldarria a R. A. incapie and . alazar “An inte rated expansion plannin model of electric and natural gas distribution systems considerin demand uncertainty ” in 2015 IEEE Power & Energy Society General Meeting, 2015, pp. 1–5.
dc.relation[20] M. esini . iarola and A. D. awkes “ trate ic natural as stora e coordination amon EU member states in response to disruption in the trans Austria gas pipeline: A stochastic approach to solidarity ” Energy, vol. 235, Nov. 2021, doi: 10.1016/j.energy.2021.121426.
dc.relation[21] EA “ lo al Ener y Review ” . Online . Availa le www.iea.or /corri enda
dc.relation[22] arvard Chan chool “ he latest on the coronavirus ” . https://www.hsph.harvard.edu/news/hsph-in-the-news/the-latest-on-the-coronavirus/ (accessed Oct. 12, 2022)
dc.relation[23] W. Xun ie L. Bowen Z. ainan W. Chen fu . Don lei and L. Zhe “Optimal lannin Method of IES with Multi-energy tora e and Wind ower ” in 2019 IEEE Sustainable Power and Energy Conference (iSPEC), 2019, pp. 2869–2872.
dc.relation[24] Z. Wan Z. Bie J. Bai . Li . Xie and X. Wan “Ro ust nit Commitment in nte rated Electricity and Dynamic Natural Gas System Considerin as tora e ” in 2019 IEEE 8th International Conference on Advanced Power System Automation and Protection (APAP), 2019, pp. 457–461.
dc.relation[25] A. M. Mart nez ánchez C. A. aldarria a Cortés and . alazar “An optimal coordination of seasonal energy storages: A holistic approach to ensure energy adequacy and cost efficiency ” Appl Energy, vol. 290, May 2021, doi: 10.1016/j.apenergy.2021.116708.
dc.relation[26] A. M. Martinez anchez . alazar and C. A. . Cortes “ he impact of natural as stora e localization on an inte rated ener y system ” in 2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America, ISGT Latin America 2021, Sep. 2021. doi: 10.1109/ISGTLatinAmerica52371.2021.9543030
dc.relation[27] X. Zhan . . Myhrvold and K. Caldeira “Key factors for assessin climate enefits of natural as versus coal electricity eneration ” Environmental Research Letters, vol. 9, no. 11, Nov. 2014, doi: 10.1088/1748-9326/9/11/114022
dc.relation[28] . Correia and C. Lyra “Optimal chedulin of a Multi-Branched Interconnected Energy ystem ” IEEE Transactions on Power Systems, vol. 7, no. 3, pp. 1225–1231, 1992, doi: 10.1109/59.207337.
dc.relation[30] M. Shahidehpour, F. U. Yon and . Wiedman “ mpact of natural as infrastructure on electric power systems ” in Proceedings of the IEEE, 2005, vol. 93, no. 5, pp. 1042–1056. doi: 10.1109/JPROC.2005.847253.
dc.relation[31] A. Talebi, A. Sadeghi-Yazdankhah, M. A. Mirzaei, and B. Mohammadi- vatloo “Co optimization of Electricity and Natural Gas Networks Considering AC Constraints and atural as tora e ” in Proceedings - 2018 Smart Grid Conference, SGC 2018, Nov. 2018. doi: 10.1109/SGC.2018.8777813.
dc.relation[32] Yang L et al. “Day-ahead schedule of a multi-energy system with power-to- as technolo y ” in IEEE Power & Energy Society General Meeting, 2017, pp. 1–5.
dc.relation[33] C. uan Q. D n . Qian X. Chen and X. Chen “Ro ust lannin Method for nte rated Energy Systems with the Consideration of multiple ener y uncertainties ” in iSPEC 2020 - Proceedings: IEEE Sustainable Power and Energy Conference: Energy Transition and Energy Internet, Nov. 2020, pp. 1499–1504. doi: 10.1109/iSPEC50848.2020.9351071.
dc.relation[34] C. e L. Wu . Liu W. Wei and C. Wan “Co-optimization scheduling of interdependent power and as systems with electricity and as uncertainties ” Energy, vol. 159, pp. 1003– 1015, Sep. 2018, doi: 10.1016/j.energy.2018.06.153.
dc.relation[35] G. Chen, K. Zeng, C. Don . u Z. en and Q. Chen “ eneration schedulin considerin natural as stora e and uncertainty ” in 2017 IEEE Manchester PowerTech, Powertech 2017, Jul. 2017. doi: 10.1109/PTC.2017.7980969.
dc.relation[36] B. Zhao A. J. Cone o and R. ioshansi “ nit commitment under gas-supply uncertainty and gas-price varia ility ” IEEE Transactions on Power Systems, vol. 32, no. 3, pp. 2394–2405, May 2017, doi: 10.1109/TPWRS.2016.2602659
dc.relation[37] M. Qadrdan J. Wu . Jenkins and J. Ekanayake “Operatin strate ies for a gb integrated as and electricity network considerin the uncertainty in wind power forecasts ” IEEE Trans Sustain Energy, vol. 5, no. 1, pp. 128–138, Jan. 2014, doi: 10.1109/TSTE.2013.2274818.
dc.relation[40] D. u and . M. Ryan “ tochastic vs. deterministic schedulin of a com ined natural as and power system with uncertain wind ener y ” International Journal of Electrical Power and Energy Systems, vol. 108, pp. 303–313, Jun. 2019, doi: 10.1016/j.ijepes.2018.12.047.
dc.relation[41] H. Liu et al. “Application of modified pro ressive hed in for stochastic unit commitment in electricity- as coupled systems ” CSEE Journal of Power and Energy Systems, vol. 7, no. 4, pp. 840–849, Jul. 2021, doi: 10.17775/CSEEJPES.2020.04420.
dc.relation[42] P.-P. Chen, X.-M. Zhu, Y.-Q. Bao, J.-L. Zhang, and X.- . Zhou “ cenario-Based Scheduling Model of Electricity and Natural Gas System Considering Multi- ncertainties ” in 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), 2018, pp. 1–6.
dc.relation[43] . . Kanelakis . . Biskas D. . Chatzi iannis and A. . Bakirtzis “A tochastic wo- ta e Model for the nte rated chedulin of the Electric and atural as ystems ” IEEE Open Access Journal of Power and Energy, vol. 7, pp. 453–466, 2020, doi: 10.1109/OAJPE.2020.3030193.
dc.relation[44] . ha az e ian . Ameli M. . Ameli and . tr ac “ tochastic optimization model for coordinated operation of natural as and electricity networks ” Comput Chem Eng, vol. 142, Nov. 2020, doi: 10.1016/j.compchemeng.2020.107060.
dc.relation[45] . E. Alvarez “ tochastic optimization considerin the uncertainties in the electricity demand natural as infrastructures photovoltaic units and wind eneration ” Comput Chem Eng, vol. 160, Apr. 2022, doi: 10.1016/j.compchemeng.2022.107712.
dc.relation[46] Y. e M. hahidehpour Z. Li C. uo and B. Zhu “Ro ust Constrained Operation of Integrated Electricity- atural as ystem Considerin Distri uted atural as tora e ” IEEE Trans Sustain Energy, vol. 9, no. 3, pp. 1061–1071, Jul. 2018, doi: 10.1109/TSTE.2017.2764004.
dc.relation[47] . Liu Z. Bie and X. Wan “Day-Ahead Dispatch of Integrated Electricity and Natural Gas ystem Considerin Reserve chedulin and Renewa le ncertainties ” IEEE Trans Sustain Energy, vol. 10, no. 2, pp. 646–658, Apr. 2019, doi: 10.1109/TSTE.2018.2843121.
dc.relation[48] A. Antenucci and . ansavini “ tochastic unit commitment and reserve schedulin under gas-supply disrupted scenarios ” in 2018 IEEE International Energy Conference, ENERGYCON 2018, Jun. 2018, pp. 1–6. doi: 10.1109/ENERGYCON.2018.8398825.
dc.relation[49] C. e L. Wu . Liu and M. hahidehpour “Ro ust Co-Optimization Scheduling of Electricity and atural as ystems via ADMM ” IEEE Trans Sustain Energy, vol. 8, no. 2, pp. 658–670, Apr. 2017, doi: 10.1109/TSTE.2016.2615104.
dc.relation[50] Z. Weiton C. Jian Z. on kai Z. Yichen and L. ianshu “Optimal Day-ahead Scheduling of Electricity and Natural Gas System at the Distribution Level Considering Uncertainty of atural as Load ” in 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), 2017, pp. 1–6.
dc.rightsManifiesto (Manifestamos) en este documento la voluntad de autorizar a la Biblioteca Jorge Roa Martínez de la Universidad Tecnológica de Pereira la publicación en el Repositorio institucional (http://biblioteca.utp.edu.co), la versión electrónica de la OBRA titulada: ________________________________________________________________________________________________ ________________________________________________________________________________________________ ________________________________________________________________________________________________ La Universidad Tecnológica de Pereira, entidad académica sin ánimo de lucro, queda por lo tanto facultada para ejercer plenamente la autorización anteriormente descrita en su actividad ordinaria de investigación, docencia y publicación. La autorización otorgada se ajusta a lo que establece la Ley 23 de 1982. Con todo, en mi (nuestra) condición de autor (es) me (nos) reservo (reservamos) los derechos morales de la OBRA antes citada con arreglo al artículo 30 de
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.subjectAnálisis estocastico
dc.subjectAlmacenamiento de gas natural
dc.subjectCombustibles fósiles
dc.subjectSistemas energéticos integrados
dc.subjectOptimización estocástica
dc.subjectAlmacenamientos de energía estacional
dc.titlePlaneamiento estocástico de los sistemas energéticos integrados considerando almacenamientos de energía estacional bajo distintos escenarios de demanda y costos de gas natural
dc.typeTrabajo de grado - Maestría
dc.typehttp://purl.org/coar/resource_type/c_bdcc
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.typeText
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typeinfo:eu-repo/semantics/acceptedVersion


Este ítem pertenece a la siguiente institución