dc.creatorMejía Naranjo, Wilson
dc.creatorBeltrán Zúñiga, Edgar O.
dc.date.accessioned2022-09-20T13:42:03Z
dc.date.accessioned2023-06-05T14:57:38Z
dc.date.available2022-09-20T13:42:03Z
dc.date.available2023-06-05T14:57:38Z
dc.date.created2022-09-20T13:42:03Z
dc.date.issued2022
dc.identifier9789587392760, 9789587392814, 9789587392753
dc.identifierhttp://hdl.handle.net/20.500.12495/9051
dc.identifierinstname: Universidad El Bosque
dc.identifierreponame: Repositorio Institucional Universidad El Bosque
dc.identifierhttps://repositorio.unbosque.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6643206
dc.description.abstractEste libro responde a la necesidad de presentar a los estudiantes de Odontología y de cursos básicos de posgrado en ciencias biomédicas u odontológicas los fundamentos y mecanismos del fenómeno de biomineralización de tejidos dentales. Se trata de un proceso dinámico y complejo llevado a cabo por células especializadas, mediante el cual ocurren la secreción y deposición de minerales de calcio y fosfato inorgánicos, los cuales interactúan de forma organizada con proteínas nucleadoras en una matriz extracelular para generar tejidos mineralizados altamente funcionales. Las células especializadas son los ameloblastos, los odontoblastos, los cementoblastos y los osteoblastos, responsables respectivamente de la producción de esmalte, dentina, cemento y hueso. Comprender los procesos de biomineralización y las dinámicas de mineralización y remineralización es importante para prevenir y tratar las enfermedades causadas por una mineralización anormal y/o defectuosa de los tejidos calcificados.
dc.publisherUniversidad El Bosque
dc.relationBronckers, A. L. J. J., Lyaruu, D. M., & DenBesten, P. K. (2009). The impact of fluoride on ameloblasts and the mechanisms of enamel fluorosis. Journal of Dental Research, 88(10), 877-893. https://doi.org/10.1177/0022034509343280
dc.relationCameron, F. K., & Seidell, A. (1904). The action of water upon the phosphates of calcium. Journal of the American Chemical Society, 26(11), 1454-1463. https://doi.org/10.1021/ja02001a007
dc.relationCastiblanco, G. A., Rutishauser, D., Ilag, L. L., Martignon, S., Castellanos, J. E., & Mejía, W. (2015). Identification of proteins from human permanent erupted enamel. European Journal of Oral Sciences, 123(6), 390-395. https://doi.org/10.1111/eos.12214
dc.relationDorozhkin, S. V. (2011). Calcium orthophosphates: Occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter, 1(2), 121-164. https://doi.org/10.4161/biom.18790
dc.relationDreesmann, H. (1892). Ueber knochenplombierung. Beitr Klin Chir, 9, 804-810.
dc.relationEvans, J. S. (2017). Polymorphs, proteins, and nucleation theory: A critical analysis. Minerals (2075-163X), 7(4):62. https://doi.org/10.3390/min7040062
dc.relationEvans, J. S. (2019). Composite materials design: Biomineralization proteins and the guided assembly and organization of biomineral nanoparticles. Materials (Basel, Switzerland), 12(4). https://doi.org/10.3390/ma12040581
dc.relationFurtos, G., Lesci, I. G., Šiller, L., Marin, F., Brümmer, F., & Checa, A. (2015). Biomineralization: From fundamentals to biomaterials & environmental issues. Pfaffikon, Switzerland: Trans Tech Publications Ltd. Retrieved from http://ezproxy.javeriana.edu.co:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=e000xww&AN=1165291&lang=es&site=ehost-live
dc.relationGower, L. B. (2008). Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chemical Reviews, 108(11), 4551-4627. https://doi.org/10.1021/cr800443h
dc.relationKay, M. I., Young, R. A., & Posner, A. S. (1964). Crystal structure of hydroxyapatite. Nature, 204(4963), 1050-1052. https://doi.org/10.1038/2041050a0
dc.relationLafisco, M., Delgado López, J., & Drouet, C. (2014). Nanocrystaline apatites: Synthesis, physical-cehmical and thermodynamic characterization. In M. Lafisco, & J. Delgado López (Eds.), Apatite (pp. 49-80) Nova Science Publishers, Inc.
dc.relationLide, D. (2005). The CRC handbook of chemistry and physics. CRC Press, Boca Ratón, Florida, 86, 2544.
dc.relationMadupalli, H., Pavan, B., & Tecklenburg, M. (2017). Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite. J Solid State Chem. 255:27-35. https://doi.org/10.1016/j.jssc.2017.07.025
dc.relationOmelon, S. J., & Grynpas, M. D. (2008). Relationships between polyphosphate chemistry, biochemistry and apatite biomineralization. Chemical Reviews, 108(11), 4694-4715. https://doi.org/10.1021/cr0782527
dc.relationPosner, A. S., & Betts, F. (1975). Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Accounts of Chemical Research, 8(8), 273-281. https://doi.org/10.1021/ar50092a003
dc.relationRamirez-Rodríguez, G., Delgado-López, J., & Gomez-Morales, J. (2013). Evolution of calcium phosphate precipitatation in hanging drop vapor infussion by in situ raman microspectroscopy. CrystEngComm, 15, 2206.
dc.relationRodríguez-Navarro, A. B., Marie, P., Nys, Y., Hincke, M. T., & Gautron, J. (2015). Amorphous calcium carbonate controls avian eggshell mineralization: A new paradigm for understanding rapid eggshell calcification. Journal of Structural Biology, 190(3), 291-303. https://doi.org/10.1016/j.jsb.2015.04.014
dc.relationSharma, R., Tsuchiya, M., Skobe, Z., Tannous, B. A., & Bartlett, J. D. (2010). The acid test of fluoride: How pH modulates toxicity. PLoS ONE, 5(-5), -e10895. https://doi.org/10.1371/journal.pone.0010895
dc.relationSimmer, J. P., & Fincham, A. G. (1995). Molecular mechanisms of dental enamel formation. Critical Reviews in Oral Biology & Medicine, 6(2), 84-108. https://doi.org/10.1177/10454411950060020701
dc.relationYao, S., Jin, B., Liu, Z., Shao, C., Zhao, R., Tang, R., & Wang, X. (2017). Biomineralization: From material tactis to biological strategy. Adv Mater, 29(14). https://doi.org/10.1002/adma.201605903
dc.relationZahn, D. (2015). Thermodynamics and kinetics of prenucleation clusters, classical and non-classical nucleation. ChemPhysChem, 16(10), 2069-2075. https://doi.org/10.1002/cphc.201500231
dc.relationAoba, T., & Fejerskov, O. (2002). Dental fluorosis: Chemistry and biology. Crit Rev Oral Biol & Med., 13(2), 155-170. https://doi.org/10.1177/154411130201300206
dc.relationBansal, A., Shetty, D., Bindal, R., & Pathak, A. (2012). Amelogenin: Novel protein with diverse applications in genetic and molecular profiling. Oral Maxillofac Pathol J, 16, 395-399. https://doi.org/10.4103/0973-029X.102495
dc.relationBartlett, J. D., & Simmer, J. P. (2015). New perspectives on amelotin and amelogenesis. J Dent Res., 94(5), 642-644. https://doi.org/10.1177/0022034515572442
dc.relationBartlett, J. D., Ganss, B., Goldberg, M., Moradian-Oldak, J., Paine, M. L., Snead, M. L., . . . Zhou, Y. L. (2006). Protein–Protein interactions of the developing enamel matrix. Current Topics in Developmental Biology, 74, 57-115. https://doi.org/10.1016/S0070-2153(06)74003-0
dc.relationBouropoulos, N., & Moradian-Oldak, J. (2004). Induction of apatite by the cooperative effect of amelogenin and the 32-kDa enamelin. Journal of Dental Research, 83(4), 278-282. https://doi.org/10.1177/154405910408300402
dc.relationBromley, K. M., Kiss, A. S., Lokappa, S. B., Lakshminarayanan, R., Fan, D., Ndao, M., . . . Moradian-Oldak, J. (2011). Dissecting amelogenin protein nanospheres: Characterization of metastable oligomers. Journal of Biological Chemistry, 286(40), 34643-34653. https://doi.org/10.1074/jbc.M111.250928
dc.relationBronckers, A. L. J. J., Lyaruu, D. M., & DenBesten, P. K. (2009). The impact of fluoride on ameloblasts and the mechanisms of enamel fluorosis. Journal of Dental Research, 88(10), 877-893. https://doi.org/10.1177/0022034509343280
dc.relationCastiblanco, G. A., Rutishauser, D., Ilag, L. L., Martignon, S., Castellanos, J. E., & Mejía, W. (2015). Identification of proteins from human permanent erupted enamel. European Journal of Oral Sciences, 123(6), 390-395. https://doi.org/10.1111/eos.12214
dc.relationCarey, C. M. (2014). Focus on fluorides: Update on the use of fluoride for the prevention of dental caries. Journal of Evidence Based Dental Practice, 14, 95-102. https://doi.org/10.1016/j.jebdp.2014.02.004
dc.relationFincham, A. G., Belcourt, A. B., Termine, J. D., Butler, W. T., & Cothran, W. C. (1981). Dental enamel matrix: Sequences of two amelogenin polypeptides. Bioscience Reports, 1(10), 771-778. https://doi.org/10.1007/BF01114799
dc.relationFincham, A. G., Moradian-Oldak, J., & Simmer, J. P. (1999). The structural biology of the developing dental enamel matrix. Journal of Structural Biology, 126(3), 270-299. https://doi.org/10.1006/jsbi.1999.4130
dc.relationGallon, V., Chen, L., Yang, X., & Moradian-Oldak, J. (2013). Localization and quantitative co-localization of enamelin with amelogenin. Journal of Structural Biology, 183(2), 239-249. https://doi.org/10.1016/j.jsb.2013.03.014
dc.relationHu, J. C. -., Zhang, C. H., Yang, Y., Kärrman-MÅrdh, C., Forsman-Semb, K., & Simmer, J. P. (2001). Cloning and characterization of the mouse and human enamelin genes. J Dent Res., 80(3), 898-902. https://doi.org/10.1177/00220345010800031001
dc.relationHu, J. C. -., Hu, Y., Lu, Y., Smith, C. E., Lertlam, R., Wright, J. T., . . . Simmer, J. P. (2014). Enamelin is critical for ameloblast integrity and enamel ultrastructure formation. PLoS ONE, 9(3), e89303. https://doi.org/10.1371/journal.pone.0089303
dc.relationHu, Y., Smith, C. E., Richardson, A. S., Bartlett, J. D., Hu, J. C. C., & Simmer, J. P. (2016). MMP20, KLK4, and MMP20/KLK4 double null mice define roles for matrix proteases during dental enamel formation. Molecular Genetics & Genomic Medicine, 4(2), 178-196. https://doi.org/10.1002/mgg3.194
dc.relationKidd, E., & Fejerskov, O. (2016). Essentials of dental caries. p. 6. Oxford: OUP Oxford.
dc.relationLacruz, R. S., Smith, C. E., Kurtz, I., Hubbard, M. J., & Paine, M. L. (2012). New paradigms on the transport functions of maturation-stage ameloblasts. Journal of Dental Research, 92(2), 122-129. https://doi.org/10.1177/0022034512470954
dc.relationLacruz, R. S., Habelitz, S., Timothy Wright, J., & Paine, M. L. (2017). Dental enamel formation and implications for oral health and disease. Physiological Reviews, 97(3), 939-993. https://doi.org/10.1152/physrev.00030.2016
dc.relationLe Norcy, E., Kwak, S., Wiedemann-Bidlack, F. B., Beniash, E., Yamakoshi, Y., Simmer, J. P., & Margolis, H. C. (2011). Leucine-rich amelogenin peptides regulate mineralization in vitro. Journal of Dental Research, 90(9), 1091-1097. https://doi.org/10.1177/0022034511411301
dc.relationLu, Y., Papagerakis, P., Yamakoshi, Y., Hu, J., Bartlett, J., & Simmer, J. (2008). Functions of KLK4 and MMP-20 in dental enamel formation. Biological Chemistry, 389(6), 695-700. https://doi.org/10.1515/BC.2008.080
dc.relationMargolis, H. C., Beniash, E., & Fowler, C. E. (2006). Role of macromolecular assembly of enamel matrix proteins in enamel formation. Journal of Dental Research, 85(9), 775-793. https://doi.org/10.1177/154405910608500902
dc.relationMoradian-Oldak, J. (2012). Protein- mediated enamel mineralization. Frontiers in Bioscience : A Journal and Virtual Library, 17, 1996-2023.
dc.relationNagano, T., Kakegawa, A., Yamakoshi, Y., Tsuchiya, S., Hu, J. C. -., Gomi, K., . . . Simmer, J. P. (2009). Mmp-20 and Klk4 cleavage site preferences for amelogenin sequences. Journal of Dental Research, 88(9), 823-828. https://doi.org/10.1177/0022034509342694
dc.relationSharma, R., Tsuchiya, M., Skobe, Z., Tannous, B. A., & Bartlett, J. D. (2010). The acid test of fluoride: How pH modulates toxicity. - PLoS ONE, 5(- 5), -e10895. https://doi.org/10.1371/journal.pone.0010895
dc.relationSimmer, J. P., & Fincham, A. G. (1995). Molecular mechanisms of dental enamel formation. Critical Reviews in Oral Biology & Medicine, 6(2), 84-108. https://doi.org/10.1177/10454411950060020701
dc.relationSire, J., Delgado, S., Frometin, D., & Girondot, M. (2005). Amelogenin: Lessons from evolution. Archives of Oral Biology, (- 2), 205-212. https://doi.org/10.1016/j.archoralbio.2004.09.004
dc.relationTeepe, J. D., Schmitz, J. E., Hu, Y., Yamada, Y., Fajardo, R. J., Smith, C. E., & Chun, Y. P. (2014). Correlation of ameloblastin with enamel mineral content. Connect Tissue Res, 55, 38-42. https://doi.org/10.3109/03008207.2014.923871
dc.relationVeis, A., & Dorvee, J. (2013). Biomineralization mechanisms: A new paradigm for crystal nucleation in organic matrices. Calcified Tissue International, 93(4), 307-315. https://doi.org/10.1007/s00223-012-9678-2
dc.relationWeatherell, J., Deutsch, D., Robinson, C., & Hallsworth, A. (1975). Fluoride concentrations in developing enamel. Nature, 256(5514), 230-232. https://doi.org/10.1038/256230a0
dc.relationAkiva, A., Kerschnitzki, M., Pinkas, I., Wagermaier, W., Yaniv, K., Fratzl, P., .Weiner, S. (2016). Mineral formation in the larval zebrafish tail bone occurs via an acidic disordered calcium phosphate phase. Journal of the American Chemical Society, 138(43), 14481-14487. https://doi.org/10.1021/jacs.6b09442
dc.relationAlvares, K. (2014). The role of acidic phosphoproteins in biomineralization. Connective Tissue Research, 55(1), 34-40. https://doi.org/10.3109/03008207.2013.867336
dc.relationArana-Chavez, V. E., & Massa, L. F. (2004). Odontoblasts: The cells forming and maintaining dentine. Int J Biochem Cell Biol, 36(8), 1367-1373 https://doi.org/10.1016/j.biocel.2004.01.006
dc.relationBeniash, E. (2011). Biominerals-hierarchical nanocomposites: The example of bone. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 3(1), 47-69 https://doi.org/10.1002/wnan.105
dc.relationBertassoni, L., & Swain, M. (2017). Removal of dentin non-collagen structures results in the unraveling of microfibril bundless in collagen type I. Connect Tissue Res, 58(5), 414-423. https://doi.org/10.1080/03008207.2016.1235566
dc.relationBertassoni, L. E., Orgel, J. P. R., Antipova, O., & Swain, M. V. (2012). The dentin organic matrix – limitations of restorative dentistry hidden on the nanometer scale. Acta Biomaterialia, 8(7), 2419-2433. https://doi.org/10.1016/j.actbio.2012.02.022
dc.relationBertassoni, L. E., Habelitz, S., Kinney, J. H., Marshall, S. J., & Marshall Jr., G. W. (2009). Biomechanical perspective on the remineralization of dentin. Caries Research, 43(1), 70-77. https://doi.org/0.1159/000201593
dc.relationBertassoni, L. E. (2017). Dentin on the nanoscale: Hierarchical organization, mechanical behavior and bioinspired engineering. Dental Materials, 33, 637-649. https://doi.org/10.1016/j.dental.2017.03.008
dc.relationBleicher, F. (2014). Odontoblast physiology. Exp Cell Res, 325(2), 65-71. https://doi.org/10.1016/j.yexcr.2013.12.012
dc.relationBonar, L. C., Lees, S., & Mook, H. A. (1985). Neutron diffraction studies of collagen in fully mineralized bone. J Mol Biol, 181(2), 265-270. http://doi.org/10.1016/0022-2836(85)90090-7
dc.relationBonucci, E. (2002). Crystal ghost and biological mineralization: Fancy spectres in an old castle, or negelcted structures worthy of belief. J. Bone. Miner. Metab, 20(5), 249-265. https://doi.org/10.1007/s007740200037
dc.relationBoonrungsiman, S., Gentleman, E., Carzaniga, R., Evans, N. D., McComb, D. W., Porter, A. E., & Stevens, M. M. (2012). The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation. Proc Natl Acad Sci U S A., 109(35), 14170-14175. https://doi.org/10.1073/pnas.1208916109
dc.relationButler, W. T., Brunn, J. C., & Qin, C. (2003). Dentin extracellular matrix (ECM) proteins: Comparison to bone ECM and contribution to dynamics of dentinogenesis. Connective Tissue Research, 44(1), 171-178. https://doi.org/10.1080/03008200390152287
dc.relationCao, Y. C., Mei, L. M., Li, Q., Lo, C. E., & Chu, H. C. (2015). Methods for biomimetic remineralization of human dentine: A systematic review. Int. J. Mol. Sci, 16(3), 4615-4627. https://doi.org/10.3390/ijms16034615
dc.relationColfen, H. (2010). Biomineralization: A crystal-clear view. Nat Mater, 9(12), 960-961. https://doi.org/10.1038/nmat2911
dc.relationDorozhkin, S. V. (2017). Hydroxyapatite and other calcium orthophosphates: Nanodimensional, multiphasic and amorphous formulations. New York: Nova Science Publishers, Inc. Retrieved from http://ezproxy.javeriana.edu.co:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=e000xww&AN=1530704&lang=es&site=ehost-live
dc.relationEmbery, G., Hall, R., Waddington, R., Septier, D., & Goldberg, M. (2001). Proteoglycans in dentinogenesis. Crit Rev Oral Biol & Med, 12(4), 331-349. https://doi.org/10.1177/10454411010120040401
dc.relationFisher, L. W., & Fedarko, N. S. (2003). Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect Tissue Res, 44(Suppl 1), 33-40.
dc.relationGericke, A., Qin, C., Sun, Y., Redfern, R., Redfern, D., Fujimoto, Y., . . . Boskey, A. L. (2010). Different forms of DMP1 play distinct roles in mineralization. J Dent Res, 89(4), 355-359. https://doi.org/10.1177/0022034510363250
dc.relationGoldberg, M., Kulkarni, A., Young, M., & Boskey, A. (2011). Dentin: Structure, composition and mineralization. Front Biosci, 3(2), 711-735. https://doi.org/10.2741/e281
dc.relationHao, J., Zou, B., Narayanan, K., & George, A. (2004). Differential expression patterns of the dentin matrix proteins during mineralized tissue formation. Bone, 34(6), 921-932 https://doi.org/10.1016/j.bone.2004.01.020
dc.relationHe, G., Dahl, T., Veis, A., & George, A. (2003). Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nat Mater, 2(8), 552-558. https://www.nature.com/articles/nmat945
dc.relationHe, G., & George, A. (2004). Dentin matrix protein 1 immobilized on type I collagen fibrils facilitates apatite deposition in vitro. J Biol Chem, 279(12), 11649-11656. https://doi.org/10.1074/jbc.M309296200
dc.relationHe, L., Hao, Y., Zhen, L., Liu, H., Shao, M., Xu, X., . . . van Loveren, C. (2019). Biomineralization of dentin. J Struct Biol, 207(2), 115-122. https://doi.org/10.1016/j.jsb.2019.05.010
dc.relationKalamajski, S., & Oldberg, Å. (2010). The role of small leucine-rich proteoglycans in collagen fibrillogenesis. Matrix Biology, 29(4), 248-253. http://doi.org/10.1016/j.matbio.2010.01.001
dc.relationKawasaki, K., & Weiss, K. M. (2008). SCPP gene evolution and the dental mineralization continuum. J Dent Res, 87(6), 520-531. https://doi.org/10.1177/154405910808700608
dc.relationKinney, J. H., Pople, J. A., Driessen, C. H., Breunig, T. M., Marshall, G. W., & Marshall, S. J. (2001). Intrafibrillar mineral may be absent in dentinogenesis imperfecta type II (DI-II). J Dent Res, 80(6), 1555-1559. https://doi.org/10.1177/00220345010800061501
dc.relationLi, C., Jing, Y., Wang, K., Ren, Y., Liu, X., Wang, X., . . . Feng, J. Q. (2018). Dentinal mineralization is not limited in the mineralization front but occurs along with the entire odontoblast process. Int J Biol Sci, 14(7), 693-704. https://doi.org/10.7150/ijbs.25712
dc.relationLinde, A., & Robins, S. (1988). Quantitative assessment of collagen crosslinks in dissected predentin and dentin. Coll Relat Res, 8(5), 443-450. https://doi.org/10.1016/s0174-173x(88)80017-7
dc.relationLinde, A. (1989). Dentin matrix proteins: Composition and possible functions in calcification. The Anatomical Record, 224(2), 154-166. https://doi.org/10.1002/ar.1092240206
dc.relationNijhuis, A. W. G., Nejadnik, M. R., Nudelman, F., Walboomers, X. F., te Riet, J., Habibovic, P., . . . Leeuwenburgh, S. C. G. (2014). Enzymatic pH control for biomimetic deposition of calcium phosphate coatings. Acta Biomaterialia, 10(2), 931-939. http://doi.org/10.1016/j.actbio.2013.09.036
dc.relationNiu, L., Jee, S. E., Jiao, K., Tonggu, L., Li, M., Wang, L., . . . Tay, F. R. (2017). Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality. Nat Mater, 16(3), 370-378. https://doi.org/10.1038/nmat4789
dc.relationNiu, L., Zhang, W., Pashley, D. H., Breschi, L., Mao, J., Chen, J., & Tay, F. R. (2013). Biomimetic remineralization of dentin. Dental Materials: Official Publication of the Academy of Dental Materials, 30(1), 77-96. https://doi.org/10.1016/j.dental.2013.07.013
dc.relationNudelman, F., Lausch, A. J., Sommerdijk, N. A. J. M., & Sone, E. D. (2013). In vitro models of collagen biomineralization. Journal of Structural Biology, 183(2), 258-269. http://doi.org/10.1016/j.jsb.2013.04.003
dc.relationOrgel, J. P. R. O., Irving, T. C., Miller, A., & Wess, T. J. (2006). Microfibrillar structure of type I collagen in situ. Proceedings of the National Academy of Sciences, 103(24), 9001-9005. https://doi.org/10.1073/pnas.0502718103
dc.relationPadovano, J. D., Ravindran, S., Snee, P. T., Ramachandran, A., Bedran-Russo, A., & George, A. (2015). DMP1-derived peptides promote remineralization of human dentin. J Dent Res., 94(4), 608-614. https://doi.org/10.1177/0022034515572441
dc.relationPrasad, M., Butler, W. T., & Qin, C. (2010). Dentin sialophosphoprotein (DSPP) in biomineralization. Connect Tissue Res, 51(5), 404-417. https://doi.org/10.3109/03008200903329789
dc.relationQin, C., Baba, O., & Butler, W. T. (2004). Post-translational modifications of SIBLING proteins and their roles in osteogenesis and dentinogenesis. Crit Rev Oral Biol & Med, 15(3), 126-136. https://doi.org/10.1177/154411130401500302
dc.relationRuch, J., Lesot, H., & Bègue-Kirn, C. (1995). Odontoblast differentiation. Int. J. Dev. BioI., 39(1), 51-68. https://pubmed.ncbi.nlm.nih.gov/7626422/#:~:text=Odontoblasts%20are%20post%2Dmitotic%2C%20neural,and%20secrete%20predentin%2Ddentin%20components
dc.relationScott, J. E. (1990). Proteoglycan:Collagen interactions and subfibrillar structure in collagen fibrils. implications in the development and ageing of connective tissues. Journal of Anatomy, 169, 23-35. https://pubmed.ncbi.nlm.nih.gov/2384335/
dc.relationTesch, W., Eidelman, N., Roschger, P., Goldenberg, F., Klaushofer, K., & Fratzl, P. (2001). Graded microstructure and mechanical properties of human crowm dentine. Calcif Tissue Int, 69(3), 147-157. https://doi.org/10.1007/s00223-001-2012-z
dc.relationThesleff, I. (2003). Epithelial-mesenchymal signalling regulating tooth morphogenesis. J Cell Sci., 116(Pt 9), 1647-1648. https://doi.org/10.1242/jcs.00410
dc.relationToroian, D., Lim, J. E., & Price, P. A. (2007). The size exclusion characteristics of type I collagen: Implications for the role of noncollagenous bone constituents in mineralization. The Journal of Biological Chemistry, 282(31), 22437-22447. https://doi.org/10.1074/jbc.M700591200
dc.relationVeis, A., & Dorvee, J. (2013). Biomineralization mechanisms: A new paradigm for crystal nucleation in organic matrices. Calcified Tissue International, 93(4), 307-315. https://doi.org/10.1007/s00223-012-9678-2
dc.relationYamakoshi, Y., & Simmer, J. P. (2018). Structural features, processing mechanism and gene splice variants of dentin sialophosphoprotein. Japanese Dental Science Review, 54(4), 183-196. https://doi.org/10.1016/j.jdsr.2018.03.006
dc.relationZhao, J., Liu, Y., Wei-bin Sun, & Yang, X. (2012). First detection, characterization, and application of amorphous calcium phosphate in dentistry. Journal of Dental Sciences, 7(4), 316-323. https://doi.org/10.1016/j.jds.2012.09.001
dc.relationAbabneh, K. T., Hall, R. C., & Embery, G. (1999). The proteoglycans of human cementum: Immunohistochemical localization in healthy, periodontally involved and ageing teeth. J Periodont Res, 34(2), 87-96. https://doi.org/10.1111/j.1600-0765.1999.tb02227.x
dc.relationAbou Neel, E., Aljabo, A., Strange, A., Ibrahim, S. (2016). Coathup M, Young A & Mudera V. Demineralization-remineralization dynamics in teeth and bone. Int J Nanom 11, 4743-4763. https://doi.org/10.2147/IJN.S107624
dc.relationArzate, H., Zeichner-David, M., & Mercado-Celis, G. (2015). Cementum proteins: Role in cementogenesis, biomineralization, periodontium formation and regeneration. Periodontol 2000 67(1), 211-233. https://doi.org/10.1111/prd.12062
dc.relationBeertsen, W., VandenBos, T., & Everts, V. (1999). Root development in mice lacking functional tissue non-specific alkaline phosphatase gene: Inhibition of acellular cementum formation. J. Dent. Res 78(6), 1221-1229. https://doi.org/10.1177/00220345990780060501
dc.relationBerry, J. E., Zhao, M., Jin, Q., Foster, B. L., Viswanathan, H., & Somerman, M. J. (2003). Exploring the origins of cementoblasts and their trigger factors. Connect. Tissue Res 44(1), 97-102. https://pubmed.ncbi.nlm.nih.gov/12952181/
dc.relationChoi, H., Kim, T., Yang, S., Lee, J., You, H., & Cho, E. (2017). A reciprocal interaction between β-catenin and osterix in cementogenesis. Sci Rep 7, 8160. https://www.nature.com/articles/s41598-017-08607-5
dc.relationFoster, B., Ao, M., Willoughby, C., Soenjaya, Y., Holm, E., Lukashova, L., & Somerman, M. (2015). Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein. Bone 78, 150-164. https://doi.org/10.1016/j.bone.2015.05.007
dc.relationFoster, B. L. (2017). On the discovery of cementum. J Periodontal Res, 52(2), 666-685. https://doi.org/10.1111/jre.12444
dc.relationGottlieb, B. (1942). Biology of the cementum. J Periodontol 13, 13-19.
dc.relationHollis, A., Arundel, P., High, A., & Balmer, R. (2013). Current concepts in hypophosphatasia: Case report and literature review. Int J Paediatr Dent 23(3), 153-159. https://doi.org/10.1111/j.1365-263X.2012.01239.x
dc.relationIkezawa, K., Hart, C. E., Williams, D. C., & Narayanan, A. S. (1997). Characterization of cementum derived growth factor as an insulin-like growth factor-I like molecule. Connect Tissue Res 36(4), 309-319. https://doi.org/10.3109/03008209709160230
dc.relationKaipatur, N. R., Murshed, M., & McKee, M. D. (2008). Matrix Gla protein inhibition of tooth mineralization. J Dent Res 87(9), 839-844. https://doi.org/10.1177/154405910808700907
dc.relationListik, E., Azevedo Marques Gaschler, J., Matias, M., Neuppmann Feres, M. F., Toma, L., & Raphaelli Nahás-Scocate, A. C. (2019). Proteoglycans and dental biology: The first review. Carbohydr Polym 1;225:115199. https://doi.org/10.1016/j.carbpol.2019.115199
dc.relationMontoya, G., Arenas, J., Romo, E., Zeichner-David, M., Alvarez, M., Narayanan, A. S., & Arzate, H. (2014). Human recombinant cementum attachment protein (hrPTPLa/CAP) promotes hydroxyapatite crystal formation in vitro and bone healing in vivo. Bone 69, 154-164. https://doi.org/10.1016/j.bone.2014.09.014
dc.relationMontoya, G., Correa, R., Arenas, J., Hoz, L., Romo, E., Arroyo, R., & Arzate, H. (2019). Cementum protein 1-derived peptide (CEMP 1-p1) modulates hydroxyapatite crystal formation in vitro. J Pept Sci 25, e3211. https://doi.org/10.1002/psc.3211
dc.relationNanci, A., & Bosshardt, D. D. (2006). Structure of periodontal tissues in health and disease*. Periodontol 2000, 40, 11-28. https://doi.org/10.1111/j.1600-0757.2005.00141.x
dc.relationOrimo, H. (2010). The mechanism of mineralization and the role of alkaline phosphatase in health and disease. J Nippon Med Sch 77, 4-12. https://doi.org/10.1272/jnms.77.4
dc.relationPopowics, T., Foster, B., Swanson, E., Fong, H., & Somerman, M. (2005). Defining the roots of cementum formation. Cells Tissues Organs 181, 248-257. https://www.karger.com/Article/Pdf/91386
dc.relationTenório, D. M. H., Santos, M. F., & Zorn, T. M. T. (2003). Distribution of biglycan and decorin in rat dental tissue. Braz J Med Biol Res 36, 1061-1065. https://doi.org/10.1590/s0100-879x2003000800012
dc.relationvan den Bos, T., & Beertsen, W. (1999). Alkaline phosphatase activity in human periodontal ligament: Age effect and relation to cementum growth rate. J Periodontal Res 34, 1-6. https://doi.org/10.1111/j.1600-0765.1999.tb02215.x
dc.relationWatanabe, H., Umeda, M., Seki, T., & Ishikawa, I. (1993). Clinical and laboratory studies of severe periodontal disease in an adolescent associated with hypophosphatasia. A case report. J. Periodontol 64, https://doi.org/174-180. 10.1902/jop.1993.64.3.174
dc.relationWatanabe, K. (1990). Prepubertal periodontitis: A review of diagnostic criteria, pathogenesis, and differential diagnosis. J Periodontal Res 25, 31-48. https://doi.org/10.1111/j.1600-0765.1990.tb01205.x
dc.relationYamamoto, T., Domon, T., Takahashi, S., Arambawatta, A. K. S., & Wakita, M. (2004). Immunolocation of proteoglycans and bone-related noncollagenous glycoproteins in developing acellular cementum of rat molars. Cell Tissue Res 317, 299-312. https://doi.org/10.1007/s00441-004-0896-4
dc.relationZeichner-David, M. (2006). Regeneration of periodontal tissues: Cementogenesis revisited. Periodontol 2000 41, 196-217. https://doi.org/10.1111/j.1600-0757.2006.00162.x
dc.relationAlam, I., Padgett, L. R., Ichikawa, S., Alkhouli, M., Koller, D. L., Lai, D. & Econs, M. J. (2014). SIBLING family genes and bone mineral density: Association and allele-specific expression in humans. Bone, 64, 166-172. https://doi.org/10.1016/j.bone.2014.04.013
dc.relationAubin, J. E. (1998). Advances in the osteoblast lineage. Biochem Cell Biol, 76, 899-910. https://pubmed.ncbi.nlm.nih.gov/10392704/
dc.relationBabaji, P., Devanna, R., Jagtap, K., Chaurasia, V. R., Jerry, J. J., Choudhury, B. K., & Duhan, D. (2017). The cell biology and role of resorptive cells in diseases: A review. Ann Afr Med, 16(2), 39-45. https://doi.org/10.4103/aam.aam_97_16
dc.relationBellido, T. (2013). Osteocytes and Their Role in Bone Remodeling. Actualizaciones En Osteología, 9(1), 56-64. http://osteologia.org.ar/files/pdf/rid32_Bellido.pdf
dc.relationBellido, T. (2014). Osteocyte-driven bone remodeling. Calcif Tissue Int, 94, 25-34. https://doi.org/10.1007/s00223-013-9774-y
dc.relationBeniash, E. (2011), Biominerals—hierarchical nanocomposites: the example of bone. WIREs Nanomed Nanobiotechnol, 3(1), 47-69. https://doi.org/10.1002/wnan.105
dc.relationBini, F., Pica, A., Marinozzi, A., & Marinozzi, F. (2017). 3D diffusion model within the collagen apatite porosity: An insight to the nanostructure of human trabecular bone. Plos One. 12(12): e0189041. https://doi.org/10.1371/journal.pone.0189041
dc.relationBouleftour, W., Juignet, L., Bouet, G., Granito, R. N., Vanden-Bossche, A., Laroche, N. & Malaval, L. (2016). The role of the SIBLING, bone sialoprotein in skeletal biology — contribution of mouse experimental genetics. Matrix Biol 52-54, 60-77. https://doi.org/10.1016/j.matbio.2015.12.011
dc.relationBoyle, W. J., Simonet, W. S., & Lacey, D. L. (2003). Osteoclast differentiation and activation. Nature 423, 337-342. https://doi.org/10.1038/nature01658
dc.relationCompston, J. (2006). Bone quality: What is it and how is it measured? Arq Bras Endocrinol Metabol. 50(4), 579-585. https://doi.org/10.1590/s0004-27302006000400003
dc.relationD'Amico, L., & Roato, I. (2012). Osteoclasts, the major actors in bone resorption. In J. S. Walker, & A. J. Brown (Eds.), Osteoclasts: Morphology, functions & clinical implications (pp. 95-112). Hauppauge, [New York]: Nova Science Publishers, Inc.
dc.relationDeshpande, A. S., & Beniash, E. (2008). Bioinspired synthesis of mineralized collagen fibrils. Cryst Growth & Des, 8, 3084-3090. https://doi.org/10.1021/cg800252f
dc.relationDorozhkin, S. (2016). Calcium orthophosphates (CaPO4): Ocurrence and properties. Prog Biomater, 5, 9-70. https://doi.org/10.1007/s40204-015-0045-z
dc.relationDucy, P., & Karsenty, G. (1998). Genetic control of cell differentiation in the skeleton. Curr Opin Cell Biol, 10, 614-619. https://doi.org/10.1016/s0955-0674(98)80037-9
dc.relationDucy, P., Schinke, T., & Karsenty, G. (2000). The osteoblast: A sophisticated fibroblast under central surveillance. Science, 289, 1501-1504. https://doi.org/10.1126/science.289.5484.1501
dc.relationFoster, B. L., Ao, M., Willoughby, C., Soenjaya, Y., Holm, E., Lukashova, L., Tran, A. B., Wimer, H. F., Zerfas, P. M., Nociti, F. H., Kantovitz, K. R., Quan, B. D., Sone, E. D., Goldberg, H. A., & Somerman, M. J. (2015). Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein. Bone, 78, 150-164. https://doi.org/10.1016/j.bone.2015.05.007
dc.relationGeorge, A., & Veis, A. (2008). Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem Rev, 108, 4670-4693. https://doi.org/10.1021/cr0782729
dc.relationGorski, J. P. (2011). Biomineralization of bone: A fresh view of the roles of non-collagenous proteins. Front Biosci (Landmark Ed), 16, 2598-2621. https://doi.org/10.2741/3875
dc.relationIkeda, F., Nishimura, R., Matsubara, T., Tanaka, S., Inoue, J., Reddy, S. V., & Yoneda, T. (2004). Critical roles of c-jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. J Clin Invest, 114, 475-484. https://doi.org/10.1172/JCI19657
dc.relationKagiya, T. (2016). Role of microRNAs in osteoclast differentiation and function. In C. Reeves (Ed.), Osteoclasts: Cell biology, functions and related diseases (pp. 1-18). New York: Nova Science Publishers, Inc.
dc.relationKanakamedala , A. K., Mahendra, J., Kareem, N., & Mahendra, L. (2019). Osteoclasts: Multifaceted molecule in vesicular trafficking. Journal of Clinical & Diagnostic Research 13(8), 1-5. https://doi.org/10.7860/JCDR/2019/40307.13064
dc.relationKanazawa, I. (2015). Osteocalcin as a hormone regulating glucose metabolism. World J Diabetes, 6(18), 1345-1354. https://doi.org/10.4239/wjd.v6.i18.1345
dc.relationStaines, K. A., MacRae, V. E., & Farquharson, C. (2012). The importance of the SIBLING family of proteins on skeletal mineralisation and bone remodelling. The Journal of endocrinology, 214(3), 241–255. https://doi.org/10.1530/JOE-12-0143
dc.relationLandis, W. J., & Silver, F. H. (2009). Mineral deposition in the extracellular matrices of vertebrate tissues: Identification of possible apatite nucleation sites on type I collagen. Cells Tissues Organs, 189, 20-24. https://doi.org/10.1159/000151454
dc.relationLerner, U. H., Kindstedt, E., & Lundberg, P. (2019). The critical interplay between bone resorbing and bone forming cells. J Clin Periodontol, 46, 33-51. https://doi.org/10.1111/jcpe.13051
dc.relationMargolis, H. C., Kwak, S., & Yamazaki, H. (2014). Role of mineralization inhibitors in the regulation of hard tissue biomineralization: Relevance to initial enamel formation and maturation. Front Physiol, 5, 339-452. https://doi.org/10.3389/fphys.2014.00339
dc.relationMoser, S. C., & van der Eerden, B. C. J. (2019). Osteocalcin-A: Versatile bone-derived hormone. Front Endocrinol (Lausanne), 9, 794. https://doi.org/10.3389/fendo.2018.00794
dc.relationNeve, A., Corrado, A., & Cantatore, F. P. (2013). Osteocalcin: Skeletal and extra-skeletal effects. J Cell Physiol, 228(6), 1149-1153. https://doi.org/10.1002/jcp.24278
dc.relationNudelman, F., Lausch, A. J., Sommerdijk, N. A. J. M., & Sone, E. D. (2013). In vitro models of collagen biomineralization. J Struct Biol, 183(2), 258-269. https://doi.org/ 10.1016/j.jsb.2013.04.003
dc.relationOrgel, J. P. R. O., Irving, T. C., Miller, A., & Wess, T. J. (2006). Microfibrillar structure of type I collagen in situ. Proc Natl Acad Sci U S A, 103(24), 9001-5. https://doi.org/10.1073/pnas.0502718103
dc.relationOu-Yang, H., Paschalis, E. P., Mayo, W. E., Boskey, A. L., & Mendelsohn, R. (2001). Infrared microscopic imaging of bone: Spatial distribution of CO3(2-). J Bone Miner Res, 16(5), 893-900. https://doi.org/10.1359/jbmr.2001.16.5.893
dc.relationPrice, P. A., Toroian, D., & Lim, J. E. (2009). Mineralization by inhibitor exclusion: the calcification of collagen with fetuin. The Journal of biological chemistry, 284(25), 17092-17101. https://doi.org/10.1074/jbc.M109.007013
dc.relationQin, C., Baba, O., & Butler, W. T. (2004). Postranslational modifications of sibling proteins and their roles in osteogenesis and dentinogenesis. Crit Rev Oral Biol & Med, 15(3), 126-136. https://doi.org/10.1177/154411130401500302
dc.relationQin, C., D’Souza, R., & Feng, J. Q. (2007). Dentin matrix protein 1 (DMP1): New and important roles for biomineralization and phosphate homeostasis. J Dent Res, 86, 1134-1141. https://doi.org/10.1177/154405910708601202
dc.relationRitchie, H. (2018). The functional significance of dentin sialoprotein-phosphophoryn and dentin sialoprotein. Int J Oral Sci, 10, 31. https://doi.org/10.1038/s41368-018-0035-9
dc.relationSaito, T., Arsenault, A. L., Yamauchi, M., Kuboki, Y., & Crenshaw, M. A. (1999). Mineral induction by immobilized phosphoproteins. Bone, 21(4), 305-311. https://doi.org/10.1016/S8756-3282(97)00149-X
dc.relationScheurer, H. (2013). Osteoblasts: Morphology, functions and clinical implications. New York: Nova Science Publishers, Inc.
dc.relationSingh, A., Gill, G., Kaur, H., Amhmed, M., & Jakhu, H. (2018). Role of osteopontin in bone remodeling and orthodontic tooth movement: A review. Prog Orthod 19(1), 18. https://doi.org/10.1186/s40510-018-0216-2
dc.relationStewart, S., Shea, D. A., Tarnowski, C. P., Morris, M. D., Wang, D., Franceschi, R. & Keller, E. (2002). Trends in early mineralization of murine calvarial osteoblastic cultures: A raman microscopic study. J Raman Spectrosc, 33(7), 536-543. https://doi.org/10.1002/jrs.892
dc.relationTavafoghi, M., & Cerruti, M. (2016). The role of amino acids in hydroxyapatite mineralization. J R Soc Interface, 13, 123. https://doi.org/10.1098/rsif.2016.0462
dc.relationTresguerres, F. G. F., Torres, J., López-Quiles, J., Hernández, G., Vega, J. A., & Tresguerres, I. F. (2020). The osteocyte: A multifunctional cell within the bone. Ann Anat, 227, 151422. https://doi.org/10.1016/j.aanat.2019.151422
dc.relationTsao, Y., Huang, Y., Wu, H., Liu, Y., Liu, Y., & Lee, K. O. (2017). Osteocalcin mediates biomineralization during osteogenic maturation in human mesenchymal stromal cells. Int J Mol Sci, 18, 159. https://doi.org/10.3390/ijms18010159
dc.relationVeis, A., & Perry, A. (1967). The phosphoprotein of the dentin matrix. Biochemistry, 6(8), 2409-2416. https://doi.org/10.1021/bi00860a017
dc.relationVeschi, E. A., Bolean, M., Strzelecka-Kiliszek, A., Bandorowicz-Pikula, J., Pikula, S., Granjon, T., & Ciancaglini, P. (2020). Localization of annexin A6 in matrix vesicles during physiological mineralization. Int J Mol Sci, 21(4), 1367. https://doi.org/ 10.3390/ijms21041367
dc.relationZofkova, I. (2008). Involvement of bone in systemic endocrine regulation. Physiol Res, 67, 669-677. https://doi.org/10.33549/physiolres.933843
dc.rightsAcceso cerrado
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightshttp://purl.org/coar/access_right/c_14cb
dc.subjectBiomineralización
dc.subjectCiencia de los materiales
dc.subjectCristalización
dc.subjectBiomateriales
dc.subjectCalcificación
dc.titleBiomineralización de tejidos calcificados
dc.typebook


Este ítem pertenece a la siguiente institución