dc.contributorVelandia Romero, Myriam Lucia
dc.contributorCastellanos Parra, Jaime Eduardo
dc.creatorCamacho Ortega, Sigrid Johanna
dc.date.accessioned2023-03-03T15:15:35Z
dc.date.accessioned2023-06-05T14:54:36Z
dc.date.available2023-03-03T15:15:35Z
dc.date.available2023-06-05T14:54:36Z
dc.date.created2023-03-03T15:15:35Z
dc.date.issued2015
dc.identifierhttp://hdl.handle.net/20.500.12495/10099
dc.identifierinstname: Universidad El Bosque
dc.identifierreponame: Repositorio Institucional Universidad El Bosque
dc.identifierrepourl: https://repositorio.unbosque.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6642560
dc.description.abstractEl virus de dengue (DENV), a pesar de ser clasificado como un virus no neurotrópico, induce durante la infección manifestaciones neurológicas como la alteración de la conciencia. Hasta el momento, los signos y síntomas neurológicos que aparecen durante la infección por DENV no se han asociado a un mecanismo en particular. Durante la infección con el JEV, WNV y el HIV se produce la disfunción y muerte de neuronas mediada por procesos excitatorios. Para Dengue, hasta el momento sólo se ha reportado en modelos in vivo e in vitro y en muestras post-mortem el daño del tejido y la perdida neuronal, sin embargo no se conoce si durante la infección con este virus suceden eventos excitotoxicos o si la la exacerbada respuesta inmune afecta la superviviencia neuronal En el presente estudio se planteó -utilizando el modelo de neuroinfección desarollado en nuestro laboratorio-, evaluar las posibles causas de alteración y muerte neuronal inducidas por la cepa D4MB-6 y el efecto de dos fármacos, ácido valproico (VPA) y MK-801 con el fin de. Para esto, se infectaron ratones Balb/C de 7 dpn con el D4MB-6 tratados o no tratados con VPA o MK 801. Los animales fueron observados y pesados diariamente por 3 o 6 dpi y sacrificados para la extracción del encéfalo y médula. De estos tejidos se obtuvieron homogenizados o cortes histológicos para evaluar la infección y producción viral, la morfología, la expresión de algunas proteínas pro y anti-apoptóticos. En los animales infectados no tratados, las manifestaciones clínicas fueron evidentes al 3er dpi y severas al 6to dpi, al igual que las alteraciones histológicas, caracterizadas por apoptosis, necrosis y espongiosis neuronal acompañadas de alteraciones vasculares como hemorragias, edema e infiltrado de células mononucleares. En esta misma, condición se observó astrogliosis, neurodegeneración y aumento en la expresión de proteínas pro-apoptóticas, como Casp 3, 8, y Bax. Por el contrario, en los animales infectados y tratados todas las manifestaciones y alteraciones neurológicas fueron reducidas, detectando sólo algunas células en apoptosis y neurodegeneración en el cerebelo de animales infectados y tratados con VPA y MK 801, al igual que la producción y transcritos pro- apoptóticos. Estos resultados sugieren que el virus D4MB-6 induce encefalitis y mielitis, como alteración vascular, así como muerte neuronal mediada por procesos excitotóxicos e inmunológicos. Dichas alteraciones son prevenidas de forma total o parcial con los fármacos MK 801 y VPA.
dc.languagespa
dc.publisherMaestría en Ciencias Básicas Biomédicas
dc.publisherUniversidad El Bosque
dc.publisherFacultad de Medicina
dc.relationAlbensi BC. The NMDA receptor/ion channel complex: a drug target for modulating synaptic plasticity and excitotoxicity. Curr. Pharm. Des. 2007; 13:3185-94
dc.relationAlcon S, Talarmin A, Debruyne M, Falconar A, Deubel V, Flamand M. Enzyme-linked immunosorbent assay specific to dengue virus type 1 nonstructural protein NS1 reveals circulation of the antigen in the blood during the acute phase of disease in patients experiencing primary or secondary infections. J Clin Microbiol. 2002; 40:376–381
dc.relationAmaral DC, Rachid MA, Vilela MC, Campos RD, Ferreira GP, Rodrigues DH, et al. Intracerebral infection with dengue-3 virus induces meningoencephalitis and behavioral changes that precede lethality in mice. J Neuroinflammation. 2011; 9;8-23
dc.relationAmorim JH, Alves RP, Boscardin SB, Ferreira LC. The dengue virus non-structural 1 protein: risks and benefits. Virus Res. 2014; 181:53-60
dc.relationAmorim JH, Pereira Bizerra RS, dos Santos Alves RP, Sbrogio-Almeida ME, Levi JE, Capurro ML, de Souza Ferreira LC. A genetic and pathologic study of a DENV2 clinical isolate capable of inducing encephalitis and hematological disturbances in immunocompetent mice. PLoS One. 2012; 7:e44984
dc.relationAn J, Zhou DS, Kawasaki K, Yasui K. The pathogenesis of spinal cord involvement in dengue virus infection. Virchows Arch. 2003; 442:472-81
dc.relationAraújo RMC, Sidrim JJC. Central nervous system involvement in dengue: a study in fatal cases from a dengue endemic area. Neurology. 2012;78:736–42
dc.relationAttwell D, Gibb A. Neuroenergetics and the kinetic design of excitatory synapses. Nat. Rev. Neurosci. 2005; 6:841-9
dc.relationAvirutnan P, Punyadee N, Noisakran S, Komoltri C, Thiemmeca S, Auethavornanan K, et al. Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. J Infect Dis. 2006; 193:1078e88.
dc.relationAvirutnan P, Zhang L, Punyadee N, Manuyakorn A, Puttikhunt C, et al. Secreted NS1 of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate. E. PLoS Pathog. 2007; 3: e183
dc.relationAye KS, Charngkaew K, Win N, Wai KZ, Moe K, Punyadee N, Thiemmeca S, Suttitheptumrong A, Sukpanichnant S, Prida M, Halstead SB. Pathologic highlights of dengue hemorrhagic fever in 13 autopsy cases from Myanmar. Hum Pathol. 2014;45:1221-33
dc.relationBarger S, Goodwin M, Porter M, Beggs M. Glutamate release from activated microglia requires the oxidative burst and lipid peroxidation. J. Neurochem. 2007; 101:1205–13
dc.relationBeasley D, Li L, Suderman M, Barrett A. Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype. Virol. 2002; 296:17-23
dc.relationBeck K, Schachtrup C. Vascular damage in the central nervous system: a multifaceted role for vascular-derived TGF-β. Cell Tissue Res. 2012;347:187-201
dc.relationBhoopat L, Bhamarapravati N, Attasiri C, Yoksarn S, Chaiwun B, Khunamornpong S, Sirisanthana V. Immunohistochemical characterization of a new monoclonal antibody reactive with dengue virus-infected cells in frozen tissue using immunoperoxidase technique. Asian Pac J Allergy Immunol. 1996;14:107-13
dc.relationBielecka A and Obuchowicz E. Antiapoptotic action of lithium and valproate. Pharmacol. Rep. 2008; 60:771-82
dc.relationBlakely P, Kleinschmidt-DeMasters B, Tyler K, Irani D. Disrupted Glutamate Transporter Expression in the Spinal Cord With Acute Flaccid Paralysis Due to West Nile Virus Infection. J. Neuropathol. Exp. Neurol. 2009; 68: 1061–72
dc.relationBlanchard F, Chipoy C. Histone deacetylase inhibitors: new drugs for the treatment of inflammatory diseases? Drug. Discov. Today. 2005; 10:197-204
dc.relationBliss TVP & Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361:31–9
dc.relationBode K, Schroder K, Hume D, Ravasi T, Heeg K, Sweet M, Dalpke A. Histone deacetylase inhibitors decrease Toll-like receptor-mediated activation of proinflammatory gene expression by impairing transcription factor recruitment. Immunol. 2007; 122: 596-606
dc.relationBourgeois MA, Denslow ND, Seino KS, Barber DS, Long MT. Gene expression analysis in the thalamus and cerebrum of horses experimentally infected with West Nile virus. PLoS One. 2011;6:e24371
dc.relationBrunkhorst R, Pfeilschifter W, Foerch C. Astroglial proteins as diagnostic markers of acute intracerebral hemorrhage-pathophysiological background and clinical findings. Transl Stroke Res. 2010;1:246-51
dc.relationBrustovetsky T, Bolshakov A, Brustovetsky N. Calpain activation and Na+/Ca2+ exchanger degradation occur downstream of calcium deregulation in hippocampal neurons exposed to excitotoxic glutamate. J. Neurosci. Res. 2010; 88:1317-28
dc.relationCam BV, Fonsmark L, Hue NB, Phuong NT, Poulsen A, Heegaard ED. Prospective case‑control study of encephalopathy in children with dengue hemorrhagic fever. Am J Trop Med Hyg. 2001; 65: 848‑51
dc.relationCarmen J, Rothstein JD, Kerr DA. Tumor necrosis factor-alpha modulates glutamate transport in the CNS and is a critical determinant of outcome from viral encephalomyelitis. Brain Res. 2009;1263:143-54
dc.relationCastellanos JE, Neissa J, Camacho-Ortega S. La infección con virus dengue induce apoptosis en celulas de neuroblastoma humano SH-SY5Y.
dc.relationCastellanos J, Bello J, Velandia-Romero M. Manifestaciones neurológicas durante la infección por el virus del dengue. Infectio. 2014;18:167-76
dc.relationChang JR, Mukerjee R, Bagashev A, Del Valle L, Chabrashvili T, Hawkins BJ, He JJ, Sawaya BE. HIV-1 Tat protein promotes neuronal dysfunction through disruption of microRNAs. J Biol Chem. 2011;286:41125-34
dc.relationChateauvieux S, Morceau F, Dicato M, Diederich M. Molecular and therapeutic potential and toxicity of valproic acid. J. Biomed. Biotechnol. 2010; Epub 2010 Jul 29
dc.relationChen C, Ou J, Chang C, Pan H, Liao S, Chen S, Raung S, Lai C. Glutamate Released by Japanese Encephalitis Virus-Infected Microglia Involves TNF-a Signaling and Contributes to Neuronal Death. Glia. 2012; 60:487–501
dc.relationChen CJ, Ou YC, Lin SY, Raung SL, Liao SL, Lai CY, Chen SY, Chen JH. Glial activation involvement in neuronal death by Japanese encephalitis virus infection. J Gen Virol. 2010; 91:1028-37
dc.relationChen L, Lei H, Liu C, Shiesh S, Chen S, Liu H, Lin Y, Wang S, Shyu H, Yeh T. Correlation of serum levels of macrophage migration inhibitory factor with disease severity and clinical outcome in dengue patients. Am. J. Trop. Med. Hyg. 2006; 74:142-7
dc.relationCheng H, Lei H, Lin C, Luo Y, Wan S, Liu H, Yeh T, Lin Y. Anti-dengue virus nonstructural protein 1 antibodies recognize protein disulfide isomerase on platelets and inhibit platelet aggregation. Mol. Immunol. 2009; 47:398-406
dc.relationCheng HJ, Luo YH, Wan SW, Lin CF, Wang ST, Hung NT, Liu CC, Ho TS, Liu HS, Yeh TM1, Lin YS. Correlation between serum levels of anti-endothelial cell autoantigen and anti-dengue virus nonstructural protein 1 antibodies in dengue patients. Am J Trop Med Hyg. 2015;92:989-95
dc.relationCollins RM, Zielke HR, Woody RC. Valproate increases glutaminase and decreases glutamine synthetase activities in primary cultures of rat brain astrocytes. J. Neurochem. 1994; 62, 1137-43
dc.relationCouvelard A, Marianneau P, Bedel C, Drouet MT, Vachon F, Hénin D, et al. Report of a fatal case of dengue infection with hepatitis: demonstration of dengue antigens in hepatocytes and liver apoptosis. Hum Pathol. 1999;30:1106-10
dc.relationCreson TK, Yuan P, Manji HK, Chen G. Evidence for involvement of ERK, PI3K, and RSK in induction of Bcl-2 by valproate. J Mol Neurosci. 2009;37:123-34
dc.relationDanbolt N. Glutamate uptake. Prog. Neurobiol. 2001; 65:1-105
dc.relationDarman J, Backovic S, Dike S, Maragakis NJ, Krishnan C, Rothstein JD, Irani DN, Kerr DA. Viral-induced spinal motor neuron death is non-cell-autonomous and involves glutamate excitotoxicity. J Neurosci. 2004;24:7566-75
dc.relationDarvishi M, Tiraihi T, Mesbah-Namin S, , Delshad A, Taheri T. Decreased GFAP Expression and Improved Functional Recovery in Contused Spinal Cord of Rats Following Valproic Acid Therapy. Neurochem. Res. 2014; 39:2319–33
dc.relationDawson. V, Dawson. T, Uhl. G, and Snyder. S. Human immunodeficiency virus type 1 coat protein neurotoxicity mediated by nitric oxide in primary cortical cultures. Proc. Natl. Acad. Sci. U S A. 1993; 15: 3256-9
dc.relationde Sousa AM, Alvarenga MP, Alvarenga RM. A cluster of transverse myelitis following dengue virus infection in the brazilian Amazon region. Trop Med Health. 2014; 42:115-20
dc.relationde Souza KP, Silva EG, de Oliveira Rocha ES, Figueiredo LB, de Almeida-Leite CM, Arantes RM, et al. Nitric oxide synthase expression correlates with death in an experimental mouse model of dengue with CNS involvement. Virol J. 2013;10:267
dc.relationDel Moral-Hernández O, Martínez-Hernández NE, Mosso-Pani MA, Hernández-Sotelo D, Illades-Aguiar B, Flores-Alfaro E, et al. Association DENV1 and DENV2 infection with high serum levels of soluble thrombomodulin and VEGF in patients with dengue fever and dengue hemorrhagic fever. Int J Clin Exp Med. 2014;7:370-8
dc.relationDesprés P, Flamand M, Ceccaldi P, Deubel V. Human Isolates of Dengue Type 1 Virus Induce Apoptosis in Mouse Neuroblastoma Cells. J. Virol. 1996; 70: 4090-6.
dc.relationDesprés P, Frenkiel M, Ceccaldi P, Dos Santos C, Deubel V. Apoptosis in the Mouse Central Nervous System in Response to Infection with Mouse-Neurovirulent Dengue Viruses. J. Virol. 1998; 72: 823-9.
dc.relationDing Y, Chang Z, Xie L, Chen Z, Ai H. Intense exercise can cause excessive apoptosis and synapse plasticity damage in rat hippocampus through Ca²⁺ overload and endoplasmic reticulum stress-induced apoptosis pathway. Chin Med J. 2014;127:3265-71
dc.relationDoble A. The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol. Ther. 1999; 81:163-221
dc.relationDomínguez RB, Kuster GW, Onuki-Castro FL, Souza VA, Levi JE, Pannuti CS. Involvement of the central nervous system in patients with dengue virus infection. J. Neurol Sci. 2008; 267:3640
dc.relationDussart P, Petit L, Labeau B, Bremand L, Leduc A, Moua D, Matheus S, Baril L. Evaluation of two new commercial tests for the diagnosis of acute dengue virus infection using NS1 antigen detection in human serum. PLoS Negl Trop Dis. 2008;2:e280
dc.relationFatemi SH, Folsom TD, Reutiman TJ, Pandian T, Braun NN, Haug K. Chronic psychotropic drug treatment causes differential expression of connexin 43 and GFAP in frontal cortex of rats. Schizophr Res. 2008;10:127-34
dc.relationLindenbach B, Thiel H, Rice C. Flavivirus: The virus and their replication. In: Knipe D, Howley Peter. Fields Virology. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 1101-52
dc.relationFoster AC, Gill R, Woodruff GN. Neuroprotective effects of MK-801 in vivo: selectivity and evidence for delayed degeneration mediated by NMDA receptor activation. J. Neurosci. 1988; 8:4745-54
dc.relationGavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the betaarrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol. 2006;8:1223-34
dc.relationGebhard G, Filomatori C, Gamarnik A. Functional RNA elements in the dengue virus genome. Viruses. 2011;3:1739-56
dc.relationGhosh Roy S, Sadigh B, Datan E, Lockshin RA, Zakeri Z. Regulation of cell survival and death during Flavivirus infections. World J Biol Chem. 2014;5:93-105
dc.relationGo HS, Seo JE, Kim KC, Han SM, Kim P, Kang YS, Han SH, Shin CY, Ko KH. Valproic acid inhibits neural progenitor cell death by activation of NF-κB signaling pathway and up-regulation of Bcl-XL. J. Biomed. Sci. 2011:4; 18-48
dc.relationGonçalves D, de Queiroz Prado R, Almeida Xavier E, Cristina de Oliveira N, da Matta Guedes PM, da Silva JS, et al. Imunocompetent mice model for dengue virus infection. ScientificWorldJournal. 2012;2012:525947
dc.relationGöttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, Heinzel T. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO. J. 2001; 20:6969-78
dc.relationGreene J, Greenemyre J. Bioenergetics and glutamate excitotoxicity. Prog Neurobiol. 1996; 48:613-34
dc.relationGulati S, Maheshwari A. Atypical manifestations of dengue. Trop. Med. Int. Health. 2007; 12:1087-95
dc.relationGupta M, Nayak R, Khwaja GA, Chowdhury D. Acute disseminated encephalomyelitis associated with dengue infection: a case report with literature review. J Neurol Sci. 2013;335:216-8
dc.relationGupta S, Knight A, Gupta A, Knapp E, Hauser K, Keller J, Bruce-Keller A. HIV Tat Elicits Microglial Glutamate Release: Role of NAPDH Oxidase and the Cystine-Glutamate Antiporter. Neurosci. Lett. 2010; 485:233–36
dc.relationGuzmán M, Kourí G. Dengue: an update. Lancet. Infect. Dis. 2009;2:33-42
dc.relationHalstead S, Mahalingam S, Marovich M, Ubol S, Mosser D. Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. Lancet. Infect. Dis. 2010;10:712-22
dc.relationHan S, Lee J. Anti-inflammatory effect of Trichostatin-A on murine bone marrow-derived macrophages. Arch. Pharm. Res. 2009; 32:613-24
dc.relationHatch S, Endy T, Thomas S, Mathew A, Potts J, Pazoles P, Libraty D, Gibbons R, Rothman A. Intracellular cytokine production by dengue virus-specific T cells correlates with subclinical secondary infection. J. Infect. Dis. 2011;203:1282-91
dc.relationHaughey N, Holden C, Nath A, Geiger J. Involvement of Inositol 1, 4, 5-TrisphosphateRegulated Stores of Intracellular Calcium in Calcium Dysregulation and Neuron Cell Death Caused by HIV-1 Protein Tat. J. Neurochem. 1999; 73:1363–74
dc.relationHober D, Poli L, Roblin B, Gestas P, Chungue E, Granic G, Imbert P, Pecarere J, Vergez-Pascal R, Wattre P. Serum levels of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and interleukin-1 beta (IL-1 beta) in dengue-infected patients. Am. J. Trop. Med. Hyg. 1993;48:32431
dc.relationHollidge B, González-Scarano F, Soldan S. Arboviral Encephalitides: Transmission, Emergence, and Pathogenesis. Neuroimmune. Pharmacol. 2010; 5: 428–4
dc.relationHsu YL, Shi SF, Wu WL, Ho LJ, Lai JH. Protective roles of interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) in dengue virus infection of human lung epithelial cells. PLoS One. 2013;8:e79518
dc.relationHuang KJ, Li SY, Chen S, Liu HS, Lin YS, Yeh TM, et al. Manifestation of thrombocytopenia in dengue-2-virus-infected mice. J. Gen. Virol. 2000;81, 2177–82
dc.relationHuettner J, Bean B. Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK801: Selective binding to open channels. Proc. Natl. Acad. Sci. U.S.A. 1988; 85:1307-11
dc.relationHwabejire JO, Jin G, Imam AM, Duggan M, Sillesen M, Deperalta D, Jepsen CH, Lu J, Li Y, deMoya MA, Alam HB. Pharmacologic modulation of cerebral metabolic derangement and excitotoxicity in a porcine model of traumatic brain injury and hemorrhagic shock. Surgery. 2013;154:234-43
dc.relationJeong HK, Ji KM, Min KJ, Choi I, Choi DJ, Jou I, Joe EH. Astrogliosis is a possible player in preventing delayed neuronal death. Mol Cells. 2014;37:345-55
dc.relationJeong MR, Hashimoto R, Senatorov VV, Fujimaki K, Ren M, Lee MS, Chuang DM. Valproic acid, a mood stabilizer and anticonvulsant, protects rat cerebral cortical neurons from spontaneous cell death: a role of histone deacetylase inhibition. FEBS. Lett. 2003; 542:74-78
dc.relationKanai H, Sawa A, Chen R-W, Leeds P, Chuang DM. Valproic acid inhibits histone deacetylase activity and suppresses excitotoxicity-induced GAPDH nuclear accumulation and apoptotic death in neuron. Pharmacogenomics. J. 2004; 4:336-44
dc.relationKaroli R, Siddiqi Z, Fatima J, Maini S. Was it a case of acute disseminated encephalomyelitis? A rare association following dengue fever. J Neurosci Rural Pract. 2013;4:318-21
dc.relationKhan MI, Anwar E, Agha A, Hassanien N, Ullah E, Syed I, Raja A. Factors predicting severe dengue in patients with dengue Fever. Mediterr J Hematol Infect Dis. 2013; 5:e2013014
dc.relationKhromykh AA, Sedlak PL, Westaway EG. Cis- and trans-acting elements in flavivirus RNA replication. J Virol. 2000;74:3253–63
dc.relationKlomporn P, Panyasrivanit M, Wikan N, Smith DR. Dengue infection of monocytic cells activates ER stress pathways, but apoptosis is induced through both extrinsic and intrinsic pathways. Virology. 2011;409:189-9
dc.relationKocahan S, Akillioglu K, Binokay S, Sencar L, Polat S. The effects of N-Methyl-D-Aspartate receptor blockade during the early neurodevelopmental period on emotional behaviors and cognitive functions of adolescent Wistar rats. Neurochem Res. 2013;38:989-96
dc.relationKocahan S, Babar E, Melik E, Akillioglu K. The effects of the interaction between N-Methyl- Aspartate receptor blockade and growth environment during the last maturation period of the nervous system on anxiety related behaviour in adulthood in the rat. Neurochem J. 2012;6:194201
dc.relationKou Z, Quinn M, Chen H, Rodrigo W, Rose R, Schlesinger J, Jin X. Monocytes, but not T or B cells, are the principal target cells for dengue virus (DV) infection among human peripheral blood mononuclear cells. J. Med. Virol. 2008; 80:134-46
dc.relationKrämer OH, Zhu P, Ostendorff HP, Golebiewski M, Tiefenbach J, Peters MA, Brill B, Groner B, Bach I, Heinzel T, Göttlicher M. The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO. J. 2003; 22:3411-20
dc.relationKroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009;16:3-11
dc.relationKroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009;16:3-11
dc.relationKumar R, Tripathi S, Tambe JJ, Arora V, Srivastava A, Nag VL. Dengue encephalopathy in children in Northern India: clinical features and comparison with non-dengue. J. Neurol. Sci. 2008; 269:41-8
dc.relationKurane I, Innis B, Nimmannitya S, Nisalak A, Meager A, Janus J, Ennis F. Activation of T lymphocytes in dengue virus infections. High levels of soluble interleukin 2 receptor, soluble CD4, soluble CD8, interleukin 2, and interferon-gamma in sera of children with dengue. J. Clin. Invest. 1991; 88:1473-80
dc.relationLardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HW, Mastroeni D. The epigenetics of aging and neurodegeneration. Prog Neurobiol. 2015 Jun 11
dc.relationLee E, Lobigs M. Substitutions at the putative receptor-binding site of an encephalitic flavivirus alter virulence and host cell tropism and reveal a role for glycosaminoglycans in entry. J. virol. 2000; 74:8867-75
dc.relationLeitmeyer K, Vaughn D, Watts D, Salas R, Villalobos I, Chacon D, Ramos C, Rico-Hesse R. Dengue virus structural differences that correlate with pathogenesis. J. virol. 1999; 73:4738-47
dc.relationLerma J. Receptores postsinápticos de neurotransmisores. Rev. R. Acad. Cienc. Exact. Fís. Nat. 1997; 91: 271-77
dc.relationLester RA, Jahr CE. NMDA channel behavior depends on agonist affinity. J. Neurosci. 1992; 12:635-43
dc.relationLéveillé F, Papadia S, Fricker M, Bell KF, Soriano FX, Martel MA, Puddifoot C, Habel M, Wyllie DJ, Ikonomidou C, Tolkovsky AM, Hardingham GE. Suppression of the intrinsic apoptosis pathway by synaptic activity. J. Neurosci. 2010; 17:2623-35
dc.relationLibraty DH, Young PR, Pickering D, Endy TP, Kalayanarooj S, Green S, Vaughn DW, Nisalak A, Ennis FA, Rothman AL. High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J Infect Dis. 2002; 186:1165–68
dc.relationLim AL, Taylor DA, Malone DT. Consequences of early life MK-801 administration: long-term behavioural effects and relevance to schizophrenia research. Behav Brain Res. 2012;227:27686
dc.relationLin C, Lei H, Shiau A, Liu H, Yeh T, Chen S, Liu C, Chiu S, Lin Y. Endothelial cell apoptosis induced by antibodies against dengue virus nonstructural protein 1 via production of nitric oxide. J. Immunol. 2002; 169:657-64
dc.relationLin C, Lei H, Shiau L, Liu C, Liu H, Yeh T, Chen S, Lin Y. Antibodies from dengue patient sera cross-react with endothelial cells and induce damage. J. Med. Virol. 2003; 69:82-90
dc.relationLind BL, Brazhe AR, Jessen SB, Tan FC, Lauritzen MJ. Rapid stimulus-evoked astrocyte Ca2+ elevations and hemodynamic responses in mouse somatosensory cortex in vivo. Proc Natl Acad Sci U S A. 2013;110:E4678–87
dc.relationLindahl JS, Keifer J. Glutamate receptor subunits are altered in forebrain and cerebellum in rats chronically exposed to the NMDA receptor antagonist phencyclidine. Neuropsychopharmacol. 2004;29:2065-73
dc.relationLipton S, Yeh M, Dreyer E. Update on current models of HIV related neuronal injury: plateletactivating factor, arachidonic acid and nitric oxide. Adv. Neuroimmunol. 1994; 4: 181-88
dc.relationLong X, Li Y, Qi Y, Xu J, Wang Z, Zhang X, Zhang D, Zhang L, Huang J. XAF1 contributes to dengue virus-induced apoptosis in vascular endothelial cells. FASEB J. 2013 ;27:1062-73
dc.relationMannie M, Raymond L. N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington's disease. Prog. Neurobiol. 2007; 81:272-93
dc.relationMattson M, Haughey N, Nath A. Cell death in HIV dementia. Cell. Death. Differ. 2005; 12: 893–904
dc.relationMattson MP, Magnus T. Ageing and neuronal vulnerability. Nat. Rev. Neurosci. 2006; 7:278-94
dc.relationMayer CA, Brunkhorst R, Niessner M, Pfeilschifter W, Steinmetz H, Foerch C. Blood levels of glial fibrillary acidic protein (GFAP) in patients with neurological diseases. PLoS One. 2013;23:e62101
dc.relationMcBride W, Bielefeldt-Ohmann H. Dengue viral infections; pathogenesis and epidemiology. Microbes. Infect. 2000; 2:1041-50
dc.relationMiranda AS, Rodrigues DH, Amaral DC, de Lima Campos RD, Cisalpino D, Vilela MC, Lacerda Queiroz N, de Souza KP, Vago JP, Campos MA, Kroon EG, da Glória de Souza D, Teixeira MM, Teixeira AL, Rachid MA. Dengue-3 encephalitis promotes anxiety-like behavior in mice. Behav. Brain Res. 2012;230:237-42
dc.relationMisra UK, Kalita J, Singh AP. Role of vascular endothelial growth factor (VEGF) in the neurological manifestations of dengue: a preliminary study. Inflammation. 2014 ;37:611-4
dc.relationMisra UK, Kalita J, Syam UK, Dhole TN. Neurological manifestations of dengue virus infection. J. Neurol Sci. 2006; 244:117-22
dc.relationMullen RJ, Buck CR, Smith AM. NeuN, a neuronal specific nuclear protein in vertebrates. Development. 1992;116:201-11
dc.relationMuller DA, Young PR. The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antiviral Res. 2013; 98:192–208
dc.relationMurthy JM. Neurological complication of dengue infection. Neurol. India. 2010;58:581-4
dc.relationNadarajah J, Madhusudhan KS, Yadav AK, Gupta AK, Vikram NK. Acute hemorrhagic encephalitis: An unusual presentation of dengue viral infection. Indian J Radiol Imaging. 2015;25:52-5
dc.relationNagy JA, Dvorak AM, Dvorak HF. VEGF-A(164/165) and PlGF: roles in angiogenesis and arteriogenesis. Trends Cardiovasc Med. 2003;13:169-75
dc.relationNargi J, Griffin E. Sindbis Virus-Induced Neuronal Death Is both Necrotic and Apoptotic and Is Ameliorated by N-Methyl-D-Aspartate Receptor Antagonists. J. Virol. 2001; 75:7114-21
dc.relationNargi J, Havert M, Zhang M, Irani D, Rothstein J, Griffin D. Glutamate receptor antagonists protect from virus-induced neural degeneration. Ann. Neurol. 2004; 55: 541- 9
dc.relationNeeraja M, Lakshmi V, Dash P, Parida M, Rao P. The clinical, serological and molecular diagnosis of emerging dengue infection at a tertiary care institute in southern, India. J. Clin. Diagn. Res. 2013;7:457-61
dc.relationNicholls DG. Mitochondrial dysfunction and glutamate excitotoxicity studied in primary neuronal cultures. Curr. Mol. Med. 2004; 4:149-77
dc.relationNilsson M, Hansson E, Rönnbäck L. Interactions between valproate, glutamate, aspartate, and GABA with respect to uptake in astroglial primary cultures. Neurochem. Res. 1992; 17:327-32
dc.relationNizar K, Uhlirova H, Tian P, Saisan PA, Cheng Q, Reznichenko L, et al. In vivo stimulusinduced vasodilation occurs without IP3 receptor activation and may precede astrocytic calcium increase. J Neurosci. 2013;33:8411–22
dc.relationNoisakran S, Perng G. Alternate hypothesis on the pathogenesis of dengue hemorrhagic fever (DHF)/dengue shock syndrome (DSS) in dengue virus infection. Exp. Biol. Med. 2008;233:4018
dc.relationOishi K, Saito M, Mapua C, Natividad F. Dengue illness: clinical features and pathogenesis. J. Infect. Chemother. 2007; 13:125-33
dc.relationOlney JW, McGeer PL, McGeer EG. Neurotoxicity of excitatory amino acids. 1978. Raven. Press. pp. 95–121
dc.relationOlney JW, Price M, Salles KS, Labruyere J, Friedrich G. MK-801 powerfully protects against Nmethyl-D-aspartate neurotoxicity. Eur. J. Pharmacol. 1987; 141:357-361
dc.relationOrganización Mundial de la Salud. Dengue guías para el diagnóstico, tratamiento, prevención y control. La Paz, Bolivia: OMG; 2009.
dc.relationOrganización Mundial de la Salud. Dengue y fiebre de dengue hemorrágico. Ginebra: Organización Mundial de la Salud, 2001.
dc.relationOrrenius S, Zhivotovsky B, Nicotera P. The role of calcium in apoptosis. Cell. Calcium. 1998; 23:173-80
dc.relationOtsu Y, Couchman K, Lyons DG, Collot M, Agarwal A, Mallet JM,Pfrieger FW, Bergles DE, Charpak S. Calcium dynamics in astrocyte processes during neurovascular coupling. Nat Neurosci. 2015;18:210–18
dc.relationPancharoen C, Thisyakorn U. Neurological manifestations in dengue patients. Southeast Asian J. Trop. Med. Public Health. 2001;32:341-5
dc.relationPandey S, Rathore C, Michael BD. Antiepileptic drugs for the primary and secondary prevention of seizures in viral encephalitis. Cochrane Database Syst Rev. 2014;10:CD010247
dc.relationPapadia S and Hardingham GE. The dichotomy of NMDA receptor signaling. Neuroscientist. 2007; 13: 572-9
dc.relationPetzold A, Groves M, Leis AA, Scaravilli F, Stokic DS. Neuronal and glial cerebrospinal fluid protein biomarkers are elevated after West Nile virus infection. Muscle Nerve. 2010;41:42-9
dc.relationPhelan P, Regan C, Kilty C, Dunne A. Sodium valproate stimulates the particulate form of glutamine synthetase in rat brain. Neuropharmacol. 1985; 24, 895-902
dc.relationPuccioni-Sohler M, Orsini M, Soares CN. Dengue: a new challenge for neurology. Neurol Int. 2012; 4:e15
dc.relationRamos C, Sánchez G, Pando RH, Baquera J, Hernández D, Mota J, Ramos J, Flores A, Llausás E. Dengue virus in the brain of a fatal case of hemorrhagic dengue fever. J. Neurovirol. 1998; 4:465-8
dc.relationRekling JC. Neuroprotective effects of anticonvulsants in rat hippocampal slice cultures exposed to oxygen/glucose deprivation. Neurosci. Lett. 2003; 335:167-70.
dc.relationRondouin G, Drian JM, Chicheportiche R, Kamenka JM, Privat A. Non-competitive antagonists of N-methyl-D-aspartate receptors protect cortical and hippocampal cell cultures against glutamate neurotoxicity. Neurosci. Lett. 1988; 91:199-203
dc.relationRudnicka D, Feldmann J, Porrot F, Wietgrefe S, Guadagnini S, Prévost MC, et al. Simultaneous cell-to-cell transmission of human immunodeficiency virus to multiple targets through polysynapses. J Virol. 2009;83:6234-46
dc.relationSaito M, Oishi K, Inoue S, Dimaano E, Alera M, Robles A, Estrella BD Jr, Kumatori A, Moji K, Alonzo M, Buerano C, Matias R, Morita K, Natividad F, Nagatake T. Association of increased platelet-associated immunoglobulins with thrombocytopenia and the severity of disease in secondary dengue virus infections. Clin. Exp. Neuroimmunol. 2004; 138:299-303
dc.relationSánchez-Burgos G, Hernández-Pando R, Campbell IL, Ramos-Castañeda J, Ramos C. Cytokine production in brain of mice experimentally infected with dengue virus. Neuroreport. 2004;15:37-42
dc.relationSchachtrup C, Ryu JK, Helmrick MJ, Vagena E, Galanakis DK, Degen JL, Margolis RU, Akassoglou K. Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-beta after vascular damage. J Neurosci. 2010;30:5843-54
dc.relationSejvar J, Leis A, Stokic D, Van Gerpen J, Marfin A, Webb R, Haddad M, Tierney B, Slavinski S, Polk J, Dostrow V, Winkelmann M, Petersen L. Acute flaccid paralysis and West Nile virus infection. Emerg. Infect. Dis. 2003; 9:788–93
dc.relationShakespear M, Halili M, Irvine K, Fairlie D, Sweet M. Histone deacetylases as regulators of inflammation and immunity. Trends. Immunol. 2011; 32: 335-43
dc.relationShresta S, Sharar KL, Prigozhin DM, Beatty PR, Harris E. Murine model for dengue virusinduced lethal disease with increased vascular permeability. J Virol. 2006;80:10208-17
dc.relationShrestha B, Gottlieb D, Diamond M. Infection and injury of neurons by West Nile encephalitis virus. J. virol. 2003;77:13203-13
dc.relationShrestha B, Pinto AK, Green S, Bosch I, Diamond MS. CD8+ T cells use TRAIL to restrict West Nile virus pathogenesis by controlling infection in neurons. J Virol. 2012 ;86:8937-48
dc.relationShrestha B, Samuel MA, Diamond MS. CD8+ T cells require perforin to clear West Nile virus from infected neurons. J Virol. 2006;80:119-29
dc.relationSilveira GF, Meyer F, Delfraro A, Mosimann AL, Coluchi N, Vasquez C, Probst CM, Báfica A, Bordignon J, Dos Santos CN. Dengue virus type 3 isolated from a fatal case with visceral complications induces enhanced proinflammatory responses and apoptosis of human dendritic cells. J Virol. 2011; 85: 5374-83
dc.relationSinn DI, Kim SJ, Chu K, Jung KH, Lee ST, Song EC, et al. Valproic acid-mediated neuroprotection in intracerebral hemorrhage via histone deacetylase inhibition and transcriptional activation. Neurobiol Dis. 2007;26:464-72
dc.relationSoares CN, Faria LC, Peralta JM, de Freitas MR, Puccioni-Sohler M. Dengue infection: neurological manifestations and cerebrospinal fluid (CSF) analysis. J Neurol Sci Turk. 2006; 249:19-24
dc.relationSolbrig MV, Perng GC. Current neurological observations and complications of dengue virus infection. Curr Neurol Neurosci Rep. 2015;15:29
dc.relationSolomon T, Dung NM, Vaughn DW, Kneen R, Thao LT, Raengsakulrach B, Loan HT, Day NP, Farrar J, Myint KS, Warrell MJ, James WS, Nisalak A, White NJ. Neurological manifestations of dengue infection. Lancet. 2000; 355:1053-9
dc.relationSornjai W, Khungwanmaythawee K, Svasti S, Fucharoen S, Wintachai P, Yoksan S, Ubol S, Wikan N, Smith DR. Dengue virus infection of erythroid precursor cells is modulated by both thalassemia trait status and virus adaptation. Virology. 2014;471:61-71
dc.relationSu HL, Lin YL, Yu HP, Tsao CH, Chen LK, Liu YT, Liao CL. The effect of human bcl-2 and bcl-X genes on dengue virus-induced apoptosis in cultured cells. Virology. 2001;282:141-53
dc.relationSzydlowska K, Tymianski M. Calcium, ischemia and excitotoxicity. Cell. Calcium. 2010; 47:12229 Tan LT, Phan TQ, Do QH, Nguyen BH, Lam QB, Cam BV, Khanh H, Hien TT, Chau NVV, Tram TT, Hien VM, Nga TVT, Shultsz C, Farrar J, Doorn HR, Jong MD. Viral etiology of encephalitis in children in southern Vietnam: results of one-year prospective descriptive study. PLoS Negl Trop Dis. 2010; 4:e854.
dc.relationTaniura H, Sng JC, Yoneda Y. Histone modifications in the brain. Neurochem. Int. 2007; 51:8591
dc.relationTavazzi E, Morrison D, Sullivan P, Morgello S, Fischer T. Brain inflammation is a common feature of HIV-infected patients without HIV encephalitis or productive brain infection. Curr HIV Res. 2014;12:97-110
dc.relationTsiang H, Ceccaldi PE, Ermine A, Lockhart B, Guillemer S. Inhibition of rabies virus infection in cultured rat cortical neurons by an N-methyl-D-aspartate noncompetitive antagonist, MK-801. Antimicrob Agents Chemother. 1991;35:572-4
dc.relationUeda Y, Willmore LJ. Molecular regulation of glutamate and GABA transporter proteins by valproic acid in rat hippocampus during epileptogenesis. Exp. Brain Res. 2000; 133:334-39
dc.relationUehara T, Sumiyoshi T, Seo T, Matsuoka T, Itoh H, Suzuki M, Kurachi M. Neonatal exposure to MK-801, an N-Methyl-DAspartate receptor antagonist, enhances methamphetamineinduced locomotion and disrupts sensorimotor gating in pre- and postpubertal rats. Brain Res. 2010; 1352:223–30
dc.relationVan Den Bosch L, Van Damme P, Bogaert E, Robberecht W. The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis. Biochim. Biophys. Acta. 2006; 1762:1068-82
dc.relationvan der Most RG, Murali-Krishna K, Ahmed R. Prolonged presence of effector-memory CD8 T cells in the central nervous system after dengue virus encephalitis. Int Immunol. 2003;15:119-25
dc.relationVázquez-Calvo Á, Martín-Acebes MA, Sáiz JC, Ngo N, Sobrino F, de la Torre JC. Inhibition of multiplication of the prototypic arenavirus LCMV by valproic acid. Antiviral Res. 2013;99:172-9
dc.relationVázquez-Calvo A, Saiz JC, Sobrino F, Martín-Acebes MA. Inhibition of enveloped virus infection of cultured cells by valproic acid. J Virol. 2011;85:1267-74
dc.relationVelandia-Romero ML, Acosta-LosadaO, Castellanos JE. In vivo infection by a neuroinvasive neurovirulent dengue virus J Neurovirol., 2012; 18:374-87
dc.relationVelandia-Romero ML, Castellanos J. Virus del dengue: estructura y ciclo viral. Infectio. 2011; 15: 33-43
dc.relationWan S, Lin C, Yeh T, Liu C, Liu H, Wang S, et al. Autoimmunity in dengue pathogenesis. J. Formos. Med. Assoc. 2013; 112:3-11
dc.relationWan SW, Lu YT, Huang CH, Lin CF, Anderson R, Liu HS, Yeh TM, Yen YT, Wu-Hsieh BA, Lin YS. Protection against dengue virus infection in mice by administration of antibodies against modified nonstructural protein 1. PLoS One. 2014; 9:e92495
dc.relationWang C, Luan Z, Yang Y, Wang Z, Cui Y, Gu G. Valproic acid induces apoptosis in differentiating hippocampal neurons by the release of tumor necrosis factor-α from activated astrocytes. Neurosci Lett. 2011;497:122-7
dc.relationWang Z, Leng Y, Tsai LK, Leeds P, Chuang DM. Valproic acid attenuates blood-brain barrier disruption in a rat model of transient focal cerebral ischemia: the roles of HDAC and MMP-9 inhibition. J Cereb Blood Flow Metab. 2011;31:52-7
dc.relationWhitehead S, Blaney J, Durbin A, Murphy B. Prospects for a dengue virus vaccine. Nat. Rev. Microbiol. 2007; 5:518-28
dc.relationWilliams KL, Zompi S, Beatty PR, Harris E. A mouse model for studying dengue virus pathogenesis and immune response. Ann N Y Acad Sci. 2009;1171:E12-23
dc.relationWilson MA, Kinsman SL, Johnston MV. Expression of NMDA receptor subunit mRNA after MK 801 treatment in neonatal rats. Brain Res Dev Brain Res. 1998; 109:211–20
dc.relationWorld Health Organization: Dengue guidelines for diagnosis, treatment, prevention and control. Newth edition. Geneva: WHO; 2009.
dc.relationWu-Hsieh BA, Yen YT, Chen HC. Dengue hemorrhage in a mouse model. Ann N Y Acad Sci. 2009;1171 Suppl 1:E42-7
dc.relationXi D, Zhang W, Wang HX, Stradtman GG, Gao WJ. Dizocilpine (MK-801) induces distinct changes of N-methyl-D-aspartic acid receptor subunits in parvalbumin-containing interneurons in young adult rat prefrontal cortex. Int J Neuropsychopharmacol. 2009;12:1395-408
dc.relationXue QS, Yang C, Hoffman PM, Streit WJ. Microglial response to murine leukemia virus-induced encephalopathy is a good indicator of neuronal perturbations. Brain Res. 2010;1319:131-41
dc.relationYi JH, Hazell AS. Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int. 2006;48:394-403
dc.relationYong R, Mu-Jin L, Shinae H, Ji H, Jong-Keun K, and Choon S. Korean J. Neuroprotection by Valproic Acid in Mouse Models of Permanent and Transient Focal Cerebral Ischemia. Physiol. Pharmacol. 2010; 14:435-40
dc.relationYoshizumi M, Eisenach JC, Hayashida K. Valproate prevents dysregulation of spinal glutamate and reduces the development of hypersensitivity in rats after peripheral nerve injury. J Pain. 2013;14:1485-91
dc.relationZhang Z, Zhang Z, Wu Y, Schluesener H. Valproic acid ameliorates inflammation in experimental autoimmune encephalomyelitis rats. Neuroscience. 2012; 27:140-50
dc.relationZhou L, Miranda-Saksena M, Saksena NK. Viruses and neurodegeneration. Virol J. 2013;10:172
dc.relationZompi S, Harris E. Animal models of dengue virus infection. Viruses. 2012; 4:62-82
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsAcceso abierto
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rights2015
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.subjectDENV
dc.subjectExcitotoxicidad
dc.subjectVPA
dc.subjectMK 801
dc.subjectApoptosis
dc.subjectNeurodegeneración
dc.titleEvaluación de la excitotoxicidad por glutamato inducida por el virus dengue neuroadaptado D4MB-6


Este ítem pertenece a la siguiente institución