dc.contributorRamírez González, Juan David
dc.creatorHernández Castro, Diana Carolina
dc.date.accessioned2021-02-08T21:20:00Z
dc.date.accessioned2023-06-05T14:43:55Z
dc.date.available2021-02-08T21:20:00Z
dc.date.available2023-06-05T14:43:55Z
dc.date.created2021-02-08T21:20:00Z
dc.date.issued2016
dc.identifierhttp://hdl.handle.net/20.500.12495/5273
dc.identifierinstname: Universidad El Bosque
dc.identifierreponame: Repositorio Institucional Universidad El Bosque
dc.identifierrepourl: https://repositorio.unbosque.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6640861
dc.description.abstractLa enfermedad de Chagas y las leishmaniasis son enfermedades de gran importancia epidemiológica en Colombia. Las técnicas moleculares proporcionan herramientas que facilitan el estudio de estas enfermedades. Por esta razón, el objetivo de este estudio fue la implementación de técnicas moleculares que permitan mejorar el diagnóstico y realizar estudios de epidemiología molecular en el país. Se recolectaron 708 muestras de pacientes con enfermedad de Chagas, 245 triatominos y 39 reservorios. Se aplicaron las siguientes técnicas moleculares: PCR convencional y tiempo real para diagnóstico, cuantificación y genotipificación de T. cruzi en muestras de pacientes, triatóminos y reservorios. PCR-HRM para determinación de fuentes alimenticias de triatóminos. Análisis de microsatélites en muestras de pacientes, triatominos y reservorios involucrados en brotes de transmisión oral. Lo anterior, con el fin de determinar las capacidades operativas de las técnicas moleculares, cargas parasitarias y DTUs en pacientes con enfermedad de Chagas. Adicionalmente, conocer los índices de infección triatominica, DTUs y preferencias alimenticias de triatominos en el país y realizar análisis de epidemiología molecular en dos brotes de transmisión oral en Colombia. En cuanto a Leishmaniasis, se incluyeron en el estudio aislamientos obtenidos de pacientes con Leishmaniasis cutánea, flebótomos y reservorios. Se realizó el diseño de un PCR-HRM para la identificación de las seis especies de Leishmania spp descritas previamente en el país. Se implementó la amplificación y secuenciación del gen citocromo b para identificación de especies de Leishmania spp. En enfermedad de Chagas, el desempeño diagnóstico de las pruebas moleculares fue mejor en fase aguda que en fase crónica de la enfermedad. Se observaron diferencias estadísticamente significativas entre las cargas parasitarias según la fase clínica. Se reafirma la amplia distribución de la DTU TcI en pacientes, triatominos y reservorios. Se encontraron altos porcentajes de infección por T. cruzi y alimentación con sangre humana en especies de triatominos consideradas secundarias en el país. Se encontró que el posible origen de uno de los brotes de transmisión oral fue la contaminación de alimentos con heces de triatóminos, mientras que en el segundo brote el posible origen corresponde a la contaminación de alimentos con secreciones odoríferas de zarigüeyas. En las leishmaniasis, la PCR-HRM de HSP-70 permite la identificación de L. amazonensis en el subgénero L. Leishmania y de L. panamensis en el subgénero L. Viannia; mientras ITS-1 permite la discriminación entre L. amazonensis y L. infantum y entre L. braziliensis y L. guyanensis. Mediante secuenciación del gen citocromo b se logró la detección de dos especies de Leishmania spp. que no habían sido previamente reportadas en el país L. equatoriensis y L. lainsoni y se realizaron mapas de distribución de todas las especies detectadas, así como su distribución en todo el circuito epidemiológico. Se logró la implementación exitosa de diferentes técnicas moleculares que fueron de utilidad para diagnóstico y epidemiología molecular de la enfermedad de Chagas y de las leishmaniasis, proporcionando nuevo conocimiento y dejando disponibles dichas técnicas para su uso en el país mediante el Instituto Nacional de Salud.
dc.languagespa
dc.publisherMaestría en Ciencias Básicas Biomédicas
dc.publisherUniversidad El Bosque
dc.publisherFacultad de Medicina
dc.relationWHO. Weekly epidemiological record - Chagas diseases in Latin America: an epidemiological update based on 2010 estimates. 2015 p. 5–13.
dc.relationWHO. Leishmaniasis : worldwide epidemiological and drug access update. 2012 p. 24.
dc.relationINS. Protocolo de vigilancia en salud publica Chagas. 2014 p. 28.
dc.relationBritto C, Cardoso A, Silveira C, Macedo V, Fernandes O. Polymerase chain reaction (PCR) as a laboratory tool for the evaluation of the parasitological cure in Chagas disease after specific treatment. Medicina (B Aires) [Internet]. 1999;59 Suppl 2:176–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10668261
dc.relationRamírez JD, Guhl F, Umezawa ES, Morillo CA, Rosas F, Marin-Neto JA, et al. Evaluation of adult chronic Chagas’ heart disease diagnosis by molecular and serological methods. J Clin Microbiol. 2009 Dec;47(12):3945–51.
dc.relationBrasil PE, De Castro L, Hasslocher-Moreno AM, Sangenis LHC, Braga JU. ELISA versus PCR for diagnosis of chronic Chagas disease: systematic review and metaanalysis. BMC Infect Dis. BioMed Central Ltd; 2010;10(1):337.
dc.relationSchijman AG, Bisio M, Orellana L, Sued M, Duffy T, Mejia Jaramillo AM, et al. International study to evaluate PCR methods for detection of Trypanosoma cruzi DNA in blood samples from Chagas disease patients. PLoS Negl Trop Dis. 2011;5(1).
dc.relationMoreira OC, Ramírez JD, Velázquez E, Melo MF a D, Lima-Ferreira C, Guhl F, et al. Towards the establishment of a consensus real-time qPCR to monitor Trypanosoma cruzi parasitemia in patients with chronic Chagas disease cardiomyopathy: A substudy from the BENEFIT trial. Acta Trop. 2013;125(1):23–31.
dc.relationDuffy T, Cura CI, Ramirez JC, Abate T, Cayo NM, Parrado R, et al. Analytical Performance of a Multiplex Real-Time PCR Assay Using TaqMan Probes for Quantification of Trypanosoma cruzi Satellite DNA in Blood Samples. PLoS Negl Trop Dis. 2013;7(1):e2000.
dc.relationTsokana CN, Athanasiou L V, Valiakos G, Spyrou V, Manolakou K, Billinis C. Molecular Diagnosis of Leishmaniasis , Species Identification and Phylogenetic Analysis. Leishmaniasis - Trends Epidemiol Diagnosis Treat. 2014;161–93.
dc.relationReithinger R, Dujardin JC. Molecular diagnosis of leishmaniasis: Current status and future applications. J Clin Microbiol. 2007;45(1):21–5.
dc.relationRamírez JC, Cura CI, Moreira C, Lages-silva E, Juiz N, Velázquez E, et al. Analytical Validation of Quantitative Real-Time PCR Methods for Quantification of Trypanosoma cruzi DNA in Blood Samples from Chagas Disease Patients. J Mol Diagnostics. 2015;17(5).
dc.relationMikita K, Maeda T, Yoshikawa S, Ono T, Miyahira Y, Kawana A. The Direct BoilLAMP method: A simple and rapid diagnostic method for cutaneous leishmaniasis. Parasitol Int [Internet]. Elsevier Ireland Ltd; 2014;63(6):785–9. Available from: http://dx.doi.org/10.1016/j.parint.2014.07.007
dc.relationSriworarat C, Phumee A, Mungthin M, Leelayoova S, Siriyasatien P. Development of loop-mediated isothermal amplification (LAMP) for simple detection of Leishmania infection. Parasit Vectors. Parasites & Vectors; 2015;8:1–8.
dc.relationKhan MGM, Bhaskar KRH, Salam MA, Akther T, Pluschke G, Mondal D. Diagnostic accuracy of loop-mediated isothermal amplification (LAMP) for detection of Leishmania DNA in buffy coat from visceral leishmaniasis patients. Parasit Vectors. 2012;5(1):280.
dc.relationAdams ER, Schoone GJ, Ageed AF, El Safi S, Schallig HDFH. Development of a reverse transcriptase loop-mediated isothermal amplification (LAMP) assay for the sensitive detection of Leishmania parasites in clinical samples. Am J Trop Med Hyg. 2010;82(4):591–6.
dc.relationThekisoe OMM, Coronel-Servian AM, Fukumoto S, Kawazu SI, Inoue N, Rodriguez C V., et al. Detection of Trypanosoma cruzi and T. rangeli infections from Rhodnius pallescens bugs by loop-mediated isothermal amplification (LAMP). Am J Trop Med Hyg. 2010;82(5):855–60.
dc.relationNzelu CO, Gomez EA, Cáceres AG, Sakurai T, Martini-Robles L, Uezato H, et al. Development of a loop-mediated isothermal amplification method for rapid massscreening of sand flies for Leishmania infection. Acta Trop [Internet]. Elsevier B.V.; 2014;132(1):1–6. Available from: http://dx.doi.org/10.1016/j.actatropica.2013.12.016
dc.relationde Andrade HM, Reis AB, dos Santos SL, Volpini AC, Marques MJ, Romanha AJ. Use of PCR-RFLP to identify Leishmania species in naturally-infected dogs. Vet Parasitol. 2006;140(3–4):231–8.
dc.relationMonroy-Ostria A, Nasereddin A, Monteon VM, Guzmán-Bracho C, Jaffe CL. ITS1 PCR-RFLP diagnosis and characterization of Leishmania in clinical samples and strains from cases of human cutaneous leishmaniasis in states of the Mexican Southeast. Interdiscip Perspect Infect Dis. 2014;2014.
dc.relationMontalvo AM, Fraga J, Maes I, Dujardin J-C, Van Der Auwera G. Three new sensitive and specific heat-shock protein 70 {PCRs} for global Leishmania species identification. Eur J Clin Microbiol Infect Dis [Internet]. 2012;31(7):1453–61. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L51731586
dc.relationHiguera SL, Guhl F, Ramírez JD. Identification of Trypanosoma cruzi Discrete Typing Units ( DTUs ) through the implementation of a High-Resolution Melting ( HRM ) genotyping assay. 2013;1–6.
dc.relationTsukayama P, Núñez JH, De Los Santos M, Soberán V, Lucas CM, Matlashewski G, et al. A FRET-Based Real-Time PCR Assay to Identify the Main Causal Agents of New World Tegumentary Leishmaniasis. PLoS Negl Trop Dis. 2013;7(1).
dc.relationBoité MC, Mauricio IL, Miles MA, Cupolillo E. New Insights on Taxonomy, Phylogeny and Population Genetics of Leishmania (Viannia) Parasites Based on Multilocus Sequence Analysis. PLoS Negl Trop Dis. 2012;6(11).
dc.relationRamírez JD, Tapia-calle G, Guhl F. Genetic structure of Trypanosoma cruzi in Colombia revealed by a High-throughput Nuclear Multilocus Sequence Typing ( nMLST ) approach. BMC Genet. 2013;14:2–10.
dc.relationMarlow MA, Boite MC, Ferreira GEM, Steindel M, Cupolillo E. Multilocus Sequence Analysis for Leishmania braziliensis Outbreak Investigation. PLoS Negl Trop Dis. 2014;8(2).
dc.relationDiosque P, Tomasini N, Lauthier JJ, Messenger LA, Monje Rumi MM, Ragone PG, et al. Optimized multilocus sequence typing (MLST) scheme for Trypanosoma cruzi. PLoS Negl Trop Dis [Internet]. 2014;8(8):e3117. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4148231&tool=pmcentrez&rendertype=abstract
dc.relationRamírez JD, Montilla M, Cucunubá ZM, Floréz AC, Zambrano P, Guhl F. Molecular Epidemiology of Human Oral Chagas Disease Outbreaks in Colombia. PLoS Negl Trop Dis. 2013;7(2):1–7.
dc.relationAluru S, Hide M, Michel G, Bañuls AL, Marty P, Pomares C. Multilocus microsatellite typing of Leishmania and clinical applications: a review. Parasite [Internet]. 2015;22(Vl):16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25950900
dc.relationKrayter L, Bumb RA, Azmi K, Wuttke J, Malik MD, Schnur LF, et al. Multilocus microsatellite typing reveals a genetic relationship but, also, genetic differences between Indian strains of Leishmania tropica causing cutaneous leishmaniasis and those causing visceral leishmaniasis. Parasit Vectors [Internet]. 2014;7:123. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3987047&tool=pmcentrez&rendertype=abstract
dc.relationFeilij H, Muller L, Gonzalez Cappa SMM, Cappa SMG. Direct Micromethod for Diagnosis of Acute and Congenital Chagas Disease. J Clin Microbiol. 1983 Aug;18(2):327–30.
dc.relationDa Silveira JF, Umezawa ES, Luquetti AO. Chagas disease: recombinant Trypanosoma cruzi antigens for serological diagnosis. Trends Parasitol. 2001;17(6):286–91.
dc.relationUmezawa ES, Bastos SF, Coura JR, Levin MJ, Gonzalez A, Rangel-Aldao R, et al. An improved serodiagnostic test for Chagas’ disease employing a mixture of Trypanosoma cruzi recombinant antigens. Transfusion [Internet]. 2003;43(1):91–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12519436
dc.relationMalchiodi EL, Chiaramonte MG, Taranto NJ, Zwirner NW, Margni RA et al. Crossreactivity studies and differential serodiagnosis of human infections caused by Trypanosoma cruzi and Leishmania spp ; use of immunoblotting and ELISA with a purified antigen. Clin Exp Immunol. 1994;97(3):417–23.
dc.relationCaballero ZC, Sousa OE, Marques WP, Saez-Alquezar A, Umezawa ES. Evaluation of serological tests to identify Trypanosoma cruzi infection in humans and determine cross-reactivity with Trypanosoma rangeli and Leishmania spp. Clin Vaccine Immunol. 2007;14(8):1045–9.
dc.relationGuzmán-Gómez D, López-Monteon A, Lagunes-Castro MDS, Álvarez-Martínez C, Hernández-Lutzon MJ, Dumonteil E, et al. Highly discordant serology against Trypanosoma cruzi in central Veracruz , Mexico : role of the antigen used for diagnostic. Parasit Vectors [Internet]. Parasites & Vectors; 2015;1–8. Available from: http://dx.doi.org/10.1186/s13071-015-1072-2
dc.relationSingh S, Dey A, Sivakumar R. Applications of molecular methods for Leishmania control. Expert Rev Mol Diagn. 2005;5:251–65.
dc.relationChappuis F, Rijal S, Soto A, Menten J, Boelaert M. A meta-analysis of the diagnostic performance of the direct agglutination test and rK39 dipstick for visceral leishmaniasis. BMJ. 2006;333(7571):723.
dc.relationElmahallawy EK, Sampedro Martínez A, Rodriguez-Granger J, Hoyos-Mallecot Y, Agil A, Navarro Mari JM, et al. Diagnosis of leishmaniasis. J Infect Dev Ctries. 2014;8(8):961–72.
dc.relationVan der Auwera G, Dujardin JC. Species typing in dermal leishmaniasis. ClinMicrobiolRev. 2015;28(1098–6618 (Electronic)):265–94.
dc.relationSimpson AGB, Stevens JR, Lukeš J. The evolution and diversity of kinetoplastid flagellates. Trends Parasitol. 2006;22(4):168–74.
dc.relationTeixeira DE, Benchimol M, Crepaldi PH, de Souza W. Interactive Multimedia to Teach the Life Cycle of Trypanosoma cruzi, the Causative Agent of Chagas Disease. PLoS Negl Trop Dis. 2012;6(8):1–13.
dc.relationZingales B, Miles M, Campbell D, Tibayrenc M, Macedo AM, Teixeira MMG, et al. The revised Trypanosoma cruzi subspecific nomenclature: Rationale, epidemiological relevance and research applications. Infect Genet Evol [Internet]. Elsevier B.V.; 2012;12(2):240–53. Available from: http://dx.doi.org/10.1016/j.meegid.2011.12.009
dc.relationZingales B, Andrade SG, Briones MRS, Campbell D, Chiari E, Fernandes O, et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: Second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz. 2009;104(7):1051–4.
dc.relationGuhl F, Ramírez JD. Trypanosoma cruzi I diversity: Towards the need of genetic subdivision? Acta Trop [Internet]. Elsevier B.V.; 2011;119(1):1–4. Available from: http://dx.doi.org/10.1016/j.actatropica.2011.04.002
dc.relationBurgos JM, Begher SB, Freitas JM, Bisio M, Duffy T, Altcheh J, et al. Molecular diagnosis and typing of Trypanosoma cruzi populations and lineages in cerebral chagas disease in a patient with AIDS. Am J Trop Med Hyg. 2005;73(6):1016–8.
dc.relationGuhl F, Ramírez JD. Retrospective molecular integrated epidemiology of Chagas disease in Colombia. Infect Genet Evol [Internet]. Elsevier B.V.; 2013;20:148–54. Available from: http://dx.doi.org/10.1016/j.meegid.2013.08.028
dc.relationRamírez JD, Guhl F, Rendón LM, Rosas F, Marin-Neto JA, Morillo CA. Chagas Cardiomyopathy Manifestations and Trypanosoma cruzi Genotypes Circulating in Chronic Chagasic Patients. PLoS Negl Trop Dis [Internet]. 2010;4(11):e899. Available from: http://dx.plos.org/10.1371/journal.pntd.0000899
dc.relationMessenger LA, Miles MA, Bern C. Between a bug and a hard place: Trypanosoma cruzi genetic diversity and the clinical outcomes of Chagas disease. Expert Rev Anti Infect Ther [Internet]. 2015;13(8):995–1029. Available from: http://informahealthcare.com/doi/abs/10.1586/14787210.2015.1056158
dc.relationZumaya-Estrada F, Messenger L, Lopez-Ordonez T, Lewis MD, Flores-Lopez C, Martínez-Ibarra AJ, et al. North American import? Charting the origins of an enigmatic Trypanosoma cruzi domestic genotype. Parasit Vectors. 2012;5(1):226.
dc.relationLlewellyn MS, Miles MA, Carrasco HJ, Lewis MD, Yeo M, Vargas J, et al. GenomeScale Multilocus Microsatellite Typing of Trypanosoma cruzi Discrete Typing Unit I Reveals Phylogeographic Structure and Specific Genotypes Linked to Human Infection. PLoS Pathog [Internet]. 2009;5(5):e1000410. Available from: http://dx.plos.org/10.1371/journal.ppat.1000410
dc.relationRamírez JD, Guhl F, Messenger L a., Lewis MD, Montilla M, Cucunuba Z, et al. Contemporary cryptic sexuality in Trypanosoma cruzi. Mol Ecol. 2012;21(17):4216–26.
dc.relationMessenger L a., Llewellyn MS, Bhattacharyya T, Franzén O, Lewis MD, Ramírez JD, et al. Multiple mitochondrial introgression events and heteroplasmy in Trypanosoma cruzi revealed by maxicircle MLST and next generation sequencing. PLoS Negl Trop Dis. 2012;6(4).
dc.relationRamírez JD, Turriago B, Tapia-Calle G, Guhl F. Understanding the role of dogs (Canis lupus familiaris) in the transmission dynamics of Trypanosoma cruzi genotypes in Colombia. Vet Parasitol [Internet]. Elsevier B.V.; 2013;196(1–2):216–9. Available from: http://dx.doi.org/10.1016/j.vetpar.2012.12.054
dc.relationCarrasco HJ, Segovia M, Llewellyn MS, Morocoima A, Urdaneta-Morales S, Martínez C, et al. Geographical distribution of Trypanosoma cruzi genotypes in venezuela. PLoS Negl Trop Dis. 2012;6(6).
dc.relationMonteiro WM, Magalhães LKC, de Sá ARN, Gomes ML, Toledo MJ de O, Borges L, et al. Trypanosoma cruzi IV causing outbreaks of acute chagas disease and infections by different haplotypes in the Western Brazilian Amazonia. PLoS One. 2012;7(7).
dc.relationRamírez J, Hernández C, Montilla M, Zambrano P, Flórez a. C, Parra E, et al. First Report of Human Trypanosoma cruzi Infection Attributed to TcBat Genotype. Zoonoses Public Health. 2013;1–3.
dc.relationLima L, Espinosa-Álvarez O, Ortiz PA, Trejo-Varón JA, Carranza JC, Pinto CM, et al. Genetic diversity of Trypanosoma cruzi in bats, and multilocus phylogenetic and phylogeographical analyses supporting Tcbat as an independent DTU (discrete typing unit). Acta Trop [Internet]. Elsevier B.V.; 2015;151(1):166–77. Available from: http://dx.doi.org/10.1016/j.actatropica.2015.07.015
dc.relationRassi A, Rassi A, Marcondes de Rezende J. American Trypanosomiasis (Chagas Disease). Infect Dis Clin North Am. 2012;26(2):275–91.
dc.relationBargues MD, Schofield CJ, Dujardin JP. Classification and Phylogeny of the Triatominae [Internet]. First Edit. American Trypanosomiasis. Elsevier Inc.; 2010. 117-147 p. Available from: http://dx.doi.org/10.1016/B978-0-12-384876-5.00006-X
dc.relationWaleckx E, Gourbière S, Dumonteil E. Intrusive versus domiciliated triatomines and the challenge of adapting vector control practices against chagas disease. Mem Inst Oswaldo Cruz. 2015;110(3):324–38.
dc.relationGuhl F, Aguilera G, Pinto N, Vergara D. Actualización de la distribución geográfica y ecoepidemiología de la fauna de triatominos ( Reduviidae : Triatominae ) en Colombia. Biomédica. 2007;27:143–62.
dc.relationSchmunis GA. Prevention of Transfusional Trypanosoma cruzi Infection in Latin America. Mem Inst Oswaldo Cruz. 1999;94(SUPPL. 1):93–101.
dc.relationGuhl F, García M, Ching R, Juliao O, Jaramillo C, Pachón D, et al. Enfermedad de Chagas Transfusional en Colombia. Trib Médica [Internet]. 1991;91(1):129–36. Available from: http://www.scielo.br/scielo.php?script=sci_nlinks&ref=000040&pid=S00740276199900070008100005&lng=en
dc.relationArmando Cortés Buelvas FG, Barraza M. Enfermedad de Chagas transfusional en Cali, Colombia. Colomb Med. 1995;26(1).
dc.relationSánchez LV, Ramírez JD. Congenital and oral transmission of American trypanosomiasis: an overview of physiopathogenic aspects. Parasitology. 2012;1–13.
dc.relationCucunubá ZM, Valencia-Hernández C a., Puerta CJ, Sosa-Estani S, Torrico F, Cortés JA, et al. Primer consenso colombiano sobre Chagas congénito y orientación clínica a mujeres en edad fértil con diagnóstico de Chagas. Infectio [Internet]. SECOT; 2014;18(2):50–65. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0123939214000046
dc.relationCastellanos YZ, Cucunubá ZM, Flórez AC, Orozco-Vargas LC. Reproducibility of serological tests for the diagnosis of Trypanosoma cruzi infection in pregnant women in an endemic area of Santander, Colombia. Biomedica [Internet]. 2014;34(2):198– 206. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24967925
dc.relationAltclas J, Sinagra A, Jaimovich G, Salgueira C, Luna C, Requejo A, et al. Reactivation of chronic Chagas’ disease following allogeneic bone marrow transplantation and successful pre-emptive therapy with benznidazole. Transpl Infect Dis. 1999;1(2):135–7.
dc.relationRoque ALR, Xavier SCC, Da Rocha MG, Duarte ACM, D’Andrea PS, Jansen AM. Trypanosoma cruzi transmission cycle among wild and domestic mammals in three areas of orally transmitted chagas disease outbreaks. Am J Trop Med Hyg. 2008;79(5):742–9.
dc.relationToso A, Vial F, Galanti N. Transmisión de la enfermedad de Chagas por vía oral. Rev Med Chil. 2011;139:258–66.
dc.relationShikanai-Yasuda MA, Carvalho NB. Oral transmission of chagas disease. Clin Infect Dis. 2012;54(6):845–52.
dc.relationRueda K, Trujillo JE, Carranza JC, Vallejo GA. Transmisión oral de Trypanosoma cruzi : una nueva situación epidemiológica de la enfermedad de Chagas en Colombia y otros países suramericanos. Biomédica. 2014;631–41.
dc.relationCoura JR. The main sceneries of chagas disease transmission. The vectors, blood and oral transmissions - A comprehensive review. Mem Inst Oswaldo Cruz. 2015;110(3):277–82.
dc.relationYoshida N. Molecular mechanisms of Trypanosoma cruzi infection by oral route. Mem Inst Oswaldo Cruz [Internet]. 2009;104 Suppl:101–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19753464
dc.relationSoto H, Tibaduiza T, Montilla M, Triana-Chávez O, Suárez DC, Torres Torres M, et al. Investigación de vectores y reservorios en brote de Chagas agudo por posible transmisión oral en Aguachica, Cesar, Colombia. Cad Saúde Pública [Internet]. 2014;30(4):746–56. Available from: http://www.scielo.br/pdf/csp/v30n4/0102-311Xcsp-30-4-0746.pdf
dc.relationRíos JF, Arboleda M, Montoya AN, Alarcón EP, Parra Henao GJ. Probable brote de transmisión oral de enfermedad de Chagas en Turbo, Antioquia. Biomédica Rev del Inst Nac Salud [Internet]. 2011;31:185–95. Available from: http://search.scielo.org/resources/art-S0120-41572011000200005-col#.UlWoq4MO3k.mendeley
dc.relationHerwaldt BL. Laboratory-acquired parasitic infections from accidental exposures. Clin Microbiol Rev. 2001;14(4):659–88.
dc.relationRodrigues JCF, Godinho JLP, Souza W de. Biology of Human Pathogenic Trypanosomatids: Epidemiology, Lifecycle and Ultrastructure. Proteins and Proteomics of Leishmania and Trypanosoma. 2014. p. 1–42.
dc.relationHerrera L. Una revisión sobre reservorios de Trypanosoma (Schizotrypanum) cruzi (Chagas, 1909), agente etiológico de la Enfermedad de Chagas. Bol Malariol y Salud Ambient. 2010;50(1):3–15.
dc.relationBern C, Longo DL, Bern C. Chagas’ Disease. N Engl J Med. 2015;373(5):456–66.
dc.relationSchenone H. Xenodiagnosis. Memórias do Inst Oswaldo Cruz (Rio Janeiro). 1999;94:289–94.
dc.relationAzevedo Franco YB, Garcia I, Rassi A, Rodrigues AC, Rocha G, Garcia HH, et al. Correlação entre a positividade do xenodiagnóstico artificial e a quantidade de sangue e triatomíneos utilizados no exame , em pacientes chagásicos crônicos Correlation among the positivity of the artificial xenodiagnosis and the amount of blood and triat. Rev Soc Bras Med Trop. 2002;35(1):29–33.
dc.relationBritto C, Cardoso MA, Vanni C, Hasslocher-Moreno A, Xavier SS, Oelemann W, et al. Polymerase chain reaction detection of Trypanosoma cruzi in human blood samples as a tool for diagnosis and treatment evaluation. Parasitology [Internet]. 1995;110 ( Pt 3(1995):241–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7724232
dc.relationUmezawa ES, Franco Da Silveira J. Serological Diagnosis of Chagas Disease with Purified and Defined Trypanosoma cruzi Antigens. Mem Inst Oswaldo Cruz. 1999;94(SUPPL. 1):285–8.
dc.relationUmezawa ES, Souza AI, Pinedo-Cancino V, Marcondes M, Marcili A, Camargo LMA, et al. TESA-blot for the diagnosis of Chagas disease in dogs from co-endemic regions for Trypanosoma cruzi, Trypanosoma evansi and Leishmania chagasi. Acta Trop. 2009;111(1):15–20.
dc.relationMinisterio de la Protección Social. Guía para la atención clínica integral del paciente con enfermedad de Chagas. Bogotá, República de Colombia: Ministerio de la Protección Social; 2010.
dc.relationMinisterio de la Protección Social, Organización Mundial de la Salud, Instituto Nacional de Salud. Guia Para La Atención Clínica Integral Del Paciente Con Enfermedad De Chagas. Inst Nac Salud. 2010;82.
dc.relationFlores MA, Trejos A, Paredes AR RA, Flores MA, Trejos A, Paredes AR. Strout’s concentration method in the diagnosis of acute Chagas disease. Bol Chil Parasitol. 1966; 21:38–9.
dc.relationBulcao Portela-Lindoso AA, Aparecida Shikanai-Yasuda M. Doenca de Chagas cronica: Do xenodiagnostico e hemocultura a reacao em cadeia da polimerase. Rev Saude Publica. 2003;37(1):107–15.
dc.relationZulantay I, Apt W, Valencia C, Torres A, Saavedra M, Rodríguez J, et al. Detection of Trypanosoma cruzi in untreated chronic chagasic patients is improved by using three parasitological methods simultaneously. J Antimicrob Chemother. 2011;66(10):2224–6.
dc.relationChiari E. Chagas Disease Diagnosis Using Polymerase Chain Reaction, Hemoculture and Serologic Methods. Mem Inst Oswaldo Cruz, Rio Janeiro. 1999;94(113):299–300.
dc.relationUmezawa ES, Nascimento MS, Kesper N, Coura JR, Borges-Pereira J, Junqueira a. C V, et al. Immunoblot assay using excreted-secreted antigens of Trypanosoma cruzi in serodiagnosis of congenital, acute, and chronic Chagas’ disease. J Clin Microbiol. 1996;34(9):2143–7.
dc.relationGuhl F, Jaramillo C, Carranza JC, Vallejo G a. Molecular characterization and diagnosis of Trypanosoma cruzi and T. rangeli. Arch Med Res. 2002;33(4):362–70.
dc.relationDuarte L, Florez O, Rincon G, Gonzalez C. Comparison of seven diagnostic tests to detect Trypanosoma cruzi infection in patients in chronic phase of Chagas disease. Colomb Med. 2014;45(2):61–6.
dc.relationBritto CC. Usefulness of PCR-based assays to assess drug efficacy in Chagas disease chemotherapy: Value and limitations. Mem Inst Oswaldo Cruz. 2009;104(SUPPL. 1):122–35.
dc.relationMiles MA, Toye PJ, Oswald SC, Godfrey DG. The identification by isoenzyme patterns of two distinct strain-groups of Trypanosoma cruzi, circulating independently in a rural area of Brazil. Trans R Soc Trop Med Hyg. 1977;71(3):217–25.
dc.relationMiles MA, Povoa MM, De Souza AA, Lainson R, Shaw JJ, Ketteridge DS. Chagas’s disease in the Amazon Basin: II. The distribution of Trypanosoma cruzi zymodemes 1 and 3 in Parana State, north Brazil. Trans R Soc Trop Med Hyg. 1981;75(5):667–74.
dc.relationLuquetti AO, Miles MA, Rassi A, de Rezende JM, de Souza AA, Povoa MM, et al. Trypanosoma cruzi: zymodemes associated with acute and chronic Chagas’ disease in central Brazil. Trans R Soc Trop Med Hyg. 1986;80(3):462–70.
dc.relationTibayrenc M, Miles MA. A genetic comparison between Brazilian and Bolivian zymodemes of Trypanosoma cruzi. Trans R Soc Trop Med Hyg. 1983;77(1):76–83.
dc.relationMendonça MB a, Nehme NS, Santos SS, Cupolillo E, Vargas N, Junqueira A, et al. Two main clusters within Trypanosoma cruzi zymodeme 3 are defined by distinct regions of the ribosomal RNA cistron. Parasitology. 2002;124(Pt 2):177–84.
dc.relationMorel C, Chiari E, Camargo EP, Mattei DM, Romanha a J, Simpson L. Strains and clones of Trypanosoma cruzi can be characterized by pattern of restriction endonuclease products of kinetoplast DNA minicircles. Proc Natl Acad Sci U S A. 1980;77(11):6810–4.
dc.relationVago a R, Macedo a M, Oliveira RP, Andrade LO, Chiari E, Galvão LM, et al. Kinetoplast DNA signatures of Trypanosoma cruzi strains obtained directly from infected tissues. Am J Pathol. 1996;149(6):2153–9.
dc.relationMuñoz C, Solari A, APT W, Zulantay I. Caracterización de las Unidades Discretas de Tipificación de Trypanosoma cruzi según sus marcadores moleculares. IberoLatinoamericana Parasitol. 2013;72(February 2016):5–21.
dc.relationSturm NR, Degrave W, Morel C, Simpson L. Sensitive detection and schizodeme classification of Trypanosoma cruzi cells by amplification of kinetoplast minicircle DNA sequences: use in diagnosis of Chagas’ disease. Mol Biochem Parasitol. 1989;33(3):205–14.
dc.relationSouto RP, Zingales B. Sensitive detection and strain classification of Trypanosoma cruzi by amplification of a ribosomal RNA sequence. Mol Biochem Parasitol. 1993;62(1):45–52.
dc.relationSouto RP, Fernandes O, Macedo AM, Campbell D a., Zingales B. DNA markers define two major phylogenetic lineages of Trypanosoma cruzi. Mol Biochem Parasitol. 1996;83(2):141–52.
dc.relationFernandes O, Souto RP, Castro JA, Pereira JB, Fernandes NC, Junqueira AC V, et al. Brazilian isolates of Trypanosoma cruzi from humans and triatomines classified into two lineages using mini-exon and ribosomal RNA sequences. Am J Trop Med Hyg. 1998;58(6):807–11.
dc.relationISRJ. Recommendations from a satellite meeting. Internartional Symposium to commemorate the 90th anniversary of the discovery of chagas disease, Rio de Janeiro,Brazil. 1999 p. 429–32.
dc.relationBrisse S, Barnabé C, Tibayrenc M. Identification of six Trypanosoma cruzi phylogenetic lineages by random amplified polymorphic DNA and multilocus enzyme electrophoresis. Int J Parasitol. 2000;30(1):35–44.
dc.relationBrisse S, Dujardin JC, Tibayrenc M. Identification of six Trypanosoma cruzi lineages by sequence-characterised amplified region markers. Mol Biochem Parasitol. 2000;111(1):95–105.
dc.relationBrisse S, Verhoef J, Tibayrenc M. Characterisation of large and small subunit rRNA and mini-exon genes further supports the distinction of six Trypanosoma cruzi lineages. Int J Parasitol. 2001;31(11):1218–26.
dc.relationGraham Clark C, Pung OJ. Host specificity of ribosomal DNA variation in sylvatic Trypanosoma cruzi from North America. Mol Biochem Parasitol. 1994;66(1):175–9.
dc.relationHerrera C, Bargues MD, Fajardo A, Montilla M, Triana O, Vallejo GA, et al. Identifying four Trypanosoma cruzi I isolate haplotypes from different geographic regions in Colombia. Infect Genet Evol. 2007;7(4):535–9.
dc.relationFalla A, Herrera C, Fajardo A, Montilla M, Vallejo GA, Guhl F. Haplotype identification within Trypanosoma cruzi I in Colombian isolates from several reservoirs, vectors and humans. Acta Trop. 2009;110(1):15–21.
dc.relationHerrera C, Guhl F, Falla A, Fajardo A, Gustavo Adolfo V, Montilla MM, et al. Genetic Variability and Phylogenetic Relationships within Trypanosoma cruzi I Isolated in Colombia Based on Miniexon Gene Sequences. J Parasitol Res. 2009;2009:1–9.
dc.relationLewis MD, Ma J, Yeo M, Carrasco HJ, Llewellyn MS, Miles MA. Genotyping of Trypanosoma cruzi: Systematic selection of assays allowing rapid and accurate discrimination of all known lineages. Am J Trop Med Hyg. 2009;81(6):1041–9.
dc.relationD’Ávila DA, Macedo AM, Valadares HMS, Gontijo ED, De Castro AM, Machado CR, et al. Probing population dynamics of Trypanosoma cruzi during progression of the chronic phase in chagasic patients. J Clin Microbiol. 2009;47(6):1718–25.
dc.relationBurgos JM, Diez M, Vigliano C, Bisio M, Risso M, Duffy T, et al. Molecular Identification of Trypanosoma cruzi Discrete Typing Units in End‐Stage Chronic Chagas Heart Disease and Reactivation after Heart Transplantation. Clin Infect Dis [Internet]. 2010;51(5):485–95. Available from: http://cid.oxfordjournals.org/lookup/doi/10.1086/655680
dc.relationCura CI, Duffy T, Lucero RH, Bisio M, Péneau J, Jimenez-Coello M, et al. Multiplex Real-Time PCR Assay Using TaqMan Probes for the Identification of Trypanosoma cruzi DTUs in Biological and Clinical Samples. PLoS Negl Trop Dis [Internet]. 2015;9(5):e0003765. Available from: http://dx.plos.org/10.1371/journal.pntd.0003765
dc.relationOliveira RP, Broude NE, Macedo a M, Cantor CR, Smith CL, Pena SD. Probing the genetic population structure of Trypanosoma cruzi with polymorphic microsatellites. Proc Natl Acad Sci U S A. 1998;95(7):3776–80.
dc.relationValadares HMS, Pimenta JR, de Freitas JM, Duffy T, Bartholomeu DC, de Paula Oliveira R, et al. Genetic profiling of Trypanosoma cruzi directly in infected tissues using nested PCR of polymorphic microsatellites. Int J Parasitol. 2008;38(7):839–50.
dc.relationDuque M, Ramírez JD, Rendón L, Guhl F. Evaluación de la variabilidad genética de aislamientos colombianos de Trypanosoma cruzi mediante marcadores microsatélites. Infectio. 2011;15(571):227–34.
dc.relationLlewellyn MS, Lewis MD, Acosta N, Yeo M, Carrasco HJ, Segovia M, et al. Trypanosoma cruzi IIc: Phylogenetic and phylogeographic insights from sequence and microsatellite analysis and potential impact on emergent Chagas disease. PLoS Negl Trop Dis. 2009;3(9).
dc.relationSegovia M, Carrasco HJ, Martínez CE, Messenger LA, Nessi A, Londoño JC, et al. Epidemiologic Source Tracking of Orally Transmitted Chagas Disease, Venezuela. Epidemiol Source Track Chagas Dis. 2013;19(7):1098–101.
dc.relationYeo M, Mauricio IL, Messenger LA, Lewis MD, Llewellyn MS, Acosta N, et al. Multilocus sequence typing (MLST) for lineage assignment and high resolution diversity studies in Trypanosoma cruzi. PLoS Negl Trop Dis. 2011;5(6).
dc.relationCarranza JC, Valadares HMS, D’Ávila DA, Baptista RP, Moreno M, Galvão LMC, et al. Trypanosoma cruzi maxicircle heterogeneity in Chagas disease patients from Brazil. Int J Parasitol. 2009;39(9):963–73.
dc.relationMachado C a, Ayala FJ. Nucleotide sequences provide evidence of genetic exchange among distantly related lineages of Trypanosoma cruzi. Proc Natl Acad Sci U S A. 2001;98(13):7396–401.
dc.relationLauthier JJ, Tomasini N, Barnabé C, Rumi MMM, D'Amato AMA, Ragone PG, et al. Candidate targets for Multilocus Sequence Typing of Trypanosoma cruzi: Validation using parasite stocks from the Chaco Region and a set of reference strains. Infect Genet Evol. 2012;12(2):350–8.
dc.relationRamírez JD, Llewellyn MS. Response to Tibayrenc and Ayala: Reproductive clonality in protozoan pathogens - Truth or artefact? Molecular Ecology. 2015. p. 5782–4.
dc.relationSantalla J, Carrasco PO, Espinoza E, Rios T, Brutus L. Primer brote reportado de la enfermedad de chagas en la Amazonía Boliviana : reporte de 14 casos agudos por transmisión oral de Trypanosoma cruzi en Guayaramerín , Beni-Bolivia First reported outbreak of Chagas disease in the Bolivian Amazonean zone : a r. Biofarbo. 2011;19(1):52–8.
dc.relationBianchi F, Cucunubá Z, Guhl F, González NL, Freilij H, Nicholls RS, et al. Followup of an Asymptomatic Chagas Disease Population of Children after Treatment with Nifurtimox (Lampit) in a Sylvatic Endemic Transmission Area of Colombia. PLoS Negl Trop Dis [Internet]. 2015;9(2):e0003465. Available from: http://dx.plos.org/10.1371/journal.pntd.0003465
dc.relationMorillo C a., MArin-Neto J, A A, Sosa-Estani S, Rassi A, Rosas F, et al. Randomized Trial of Benznidazole for Chronic Chagas’ Cardiomyopathy. N Engl J Med. 2015;373(14):1–12.
dc.relationMolina I, Salvador F, Sanchez-Montalva a. Posaconazole versus benznidazole for chronic Chagas’ disease. N Engl J Med [Internet]. 2014;371(10):966. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25184871
dc.relationAkhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, et al. A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies. PLoS Negl Trop Dis. 2016;10(3):e0004349.
dc.relationCupolillo E, Medina-Acosta E, Noyes H, Momen H, Grimaldi G. J. A revised classification for Leishmania and Endotrypanum. Parasitol Today. 2000;16(4):142–4.
dc.relationMontalvo Alvarez AM, Nodarse JF, Goodridge IM, Fidalgo LM, Marin M, Van Der Auwera G, et al. Differentiation of Leishmania (Viannia) panamensis and Leishmania (V.) guyanensis using BccI for hsp70 PCR-RFLP. Trans R Soc Trop Med Hyg. 2010;104(5):364–7.
dc.relationKreutzer R, Corredor A, Grimaldi G, Grogl M, Rowton E, Young D, et al. Characterization of Leishmania colombiensis sp. (Kinetoplastida: Trypanosomatidae), a new parasite infecting humans, animals, and Phlebotomine sand flies in Colombia and Panama. Am J Trop Med Hyg. 1991;44(6):662–75.
dc.relationCroan DG, Morrison D a, Ellis JT. Evolution of the genus Leishmania revealed by comparison of DNA and RNA polymerase gene sequences. Mol Biochem Parasitol. 1997;89:149–59.
dc.relationZelazny AM, Fedorko DP, Li L, Neva FA, Fischer SH. Evaluation of 7SL RNA gene sequences for the identification of Leishmania spp. Am J Trop Med Hyg. 2005;72(4):415–20.
dc.relationBerzunza-Cruz M, Cabrera N, Crippa-Rossi M, Sosa Cabrera T, Pérez-Montfort R, Becker I. Polymorphism analysis of the internal transcribed spacer and small subunit of ribosomal RNA genes of Leishmania mexicana. Parasitol Res. 2002;88(10):918–25.
dc.relationWaki K, Dutta S, Ray D, Kolli BK, Akman L, Kawazu SI, et al. Transmembrane molecules for phylogenetic analyses of pathogenic protists: Leishmania-specific informative sites in hydrophilic loops of trans-endoplasmic reticulum Nacetylglucosamine-1-phosphate transferase. Eukaryot Cell. 2007;6(2):198–210.
dc.relationAsato Y, Oshiro M, Myint CK, Yamamoto Y, Kato H, Marco JD, et al. Phylogenic analysis of the genus Leishmania by cytochrome b gene sequencing. Exp Parasitol [Internet]. Elsevier Inc.; 2009;121(4):352–61. Available from: http://dx.doi.org/10.1016/j.exppara.2008.12.013
dc.relationMyint CK, Asato Y, Yamamoto YI, Kato H, Bhutto AM, Soomro FR, et al. Polymorphisms of cytochrome b gene in Leishmania parasites and their relation to types of cutaneous leishmaniasis lesions in Pakistan. J Dermatol. 2008;35(2):76–85.
dc.relationVan der Auwera G, Maes I, De Doncker S, Ravel C, Cnops L, Van Esbroeck M, et al. Heat-shock protein 70 gene sequencing for Leishmania species typing in European tropical infectious disease clinics. Euro Surveill. 2013;18(30):20543.
dc.relationFraga J, Montalvo AM, De Doncker S, Dujardin J-C, Van der Auwera G. Phylogeny of Leishmania species based on the heat-shock protein 70 gene. Infect Genet Evol. 2010;10(2):238–45.
dc.relationTeixeira DE, Benchimol M, Rodrigues JCF, Crepaldi PH, Pimenta PFP, de Souza W. The Cell Biology of Leishmania: How to Teach Using Animations. PLoS Pathog. 2013;9(10):8–11.
dc.relationMcCall LI, McKerrow JH. Determinants of disease phenotype in trypanosomatid parasites. Trends Parasitol [Internet]. Elsevier Ltd; 2014;30(7):342–9. Available from: http://dx.doi.org/10.1016/j.pt.2014.05.001
dc.relationLukes J, Mauricio IL, Schönian G, Dujardin J-C, Soteriadou K, Dedet J-P, et al. Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy. Proc Natl Acad Sci U S A. 2007;104(22):9375–80.
dc.relationEl Baidouri F, Diancourt L, Berry V, Chevenet F, Pratlong F, Marty P, et al. Genetic Structure and Evolution of the Leishmania Genus in Africa and Eurasia: What Does MLSA Tell Us. PLoS Negl Trop Dis. 2013;7(6).
dc.relationSchönian G, Schnur L, El Fari M, Oskam L, Kolesnikov AA, Sokolowska-Köhler W, et al. Genetic heterogeneity in the species Leishmania tropica revealed by different PCR-based methods. Trans R Soc Trop Med Hyg. 2001;95(2):217–24.
dc.relationSchwenkenbecher JM, Wirth T, Schnur LF, Jaffe CL, Schallig H, Al-Jawabreh A, et al. Microsatellite analysis reveals genetic structure of Leishmania tropica. Int J Parasitol. 2006;36(2):237–46.
dc.relationVan Der Auwera G, Ravel C, Verweij JJ, Bart A, Schon ̈ ian G, Felger I. Evaluation of four single-locus markers for leishmania species discrimination by sequencing. J Clin Microbiol. 2014;52(4):1098–104.
dc.relationBañuls AL, Jonquieres R, Guerrini F, Le Pont F, Barrera C, Espinel I, et al. Genetic analysis of Leishmania parasites in Ecuador: Are Leishmania (Viannia) panamensis and Leishmania (V.) guyanensis distinct taxa? Am J Trop Med Hyg. 1999;61(5):838–45.
dc.relationVeland N, Boggild AK, Valencia C, Valencia BM, Llanos-Cuentas A, Van Der Auwera G, et al. Leishmania (Viannia) species identification on clinical samples from cutaneous leishmaniasis patients in Peru: Assessment of a molecular stepwise approach. J Clin Microbiol. 2012;50(2):495–8.
dc.relationOdiwuor S, Veland N, Maes I, Arévalo J, Dujardin JC, Van der Auwera G. Evolution of the Leishmania braziliensis species complex from amplified fragment length polymorphisms, and clinical implications. Infect Genet Evol [Internet]. Elsevier B.V.; 2012;12(8):1994–2002. Available from: http://dx.doi.org/10.1016/j.meegid.2012.03.028
dc.relationCorredor A, Kreutzer RD, Tesh RB, Boshell J, Caceres E, Duque S, et al. Distribution and etiology of leishmaniasis in Colombia. Am J Trop Med Hyg. 1990;42(3):206–14.
dc.relationOvalle CE,Porras L, Rey M, Ríos M, Camargo YC. Distribución geográfica de especies de Leishmania aisladas de pacientes consultantes al Instituto Nacional de Dermatología Federico Lleras Acosta, E.S.E., 1995-2005. Biomedica. 2006;26(Supl. 1):145–51.
dc.relationSaravia NG, Segura I, Holguin AF, Santrich C, Valderrama L, Ocampo C.Epidemiologic, genetic, and clinical associations among phenotypically distinct populations of Leishmania (Viannia) in Colombia. Am J Trop Med Hyg. 1998;59(1):86–94.
dc.relationAlvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012;7(5).
dc.relationFerro C, López M, Fuya P, Lugo L, Cordovez JM, González C. Spatial distribution of sand fly vectors and eco-epidemiology of cutaneous leishmaniasis transmission in Colombia. PLoS One. 2015;10(10):1–16.
dc.relationBañuls AL, Hide M, Prugnolle F. Leishmania and the Leishmaniases: A Parasite Genetic Update and Advances in Taxonomy, Epidemiology and Pathogenicity in Humans. Adv Parasitol. 2007;64.
dc.relationDey A, Singh S, Journal I, Microbiology M, Dey A, Singh S. 15/2/2016 Transfusion transmitted leishmaniasis: A case report and review of literature. Indian Journal of Medical Microbiology. Indian J Med Microbiol. 2016;24(3):1–8.
dc.relationPagliano P, Carannante N, Rossi M, Gramiccia M, Gradoni L, Faella FS, et al. Visceral leishmaniasis in pregnancy: A case series and a systematic review of the literature. J Antimicrob Chemother. 2005;55(2):229–33.
dc.relationTurchetti AP, Souza TD, Paixo TA, Santos RL. Sexual and vertical transmission of visceral leishmaniasis. J Infect Dev Ctries. 2014;8(4):403–7.
dc.relationBoggiatto PM, Gibson-Corley KN, Metz K, Gallup JM, Hostetter JM, Mullin K, et al. Transplacental transmission of Leishmania infantum as a means for continued disease incidence in North America. PLoS Negl Trop Dis. 2011;5(4).
dc.relationMescouto-Borges MRM, Maus M, Costa DL, da Silva Pranchevicius MC, Romero GAS. Congenitally transmitted visceral leishmaniasis: Report of two Brazilian human cases. Brazilian J Infect Dis [Internet]. Elsevier Editora Ltda; 2013;17(2):263–6. Available from: http://dx.doi.org/10.1016/j.bjid.2012.10.017
dc.relationNaucke TJ, Lorentz S. First report of venereal and vertical transmission of canine leishmaniosis from naturally infected dogs in Germany. Parasit Vectors [Internet]. BioMed Central Ltd; 2012;5(1):67. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3350385&tool=pmcentrez&rendertype=abstract
dc.relationAlexander B, Agudelo LA, Navarro JF, Ruiz JF, Molina J, Aguilera G, et al. Relationship between coffee cultivation practices in Colombia and exposure to infection with Leishmania. Trans R Soc Trop Med Hyg. 2009;103(12):1263–8.
dc.relationValderrama-Ardila C, Alexander N, Ferro C, Cadena H, Martín D, Holford TR, et al. Environmental risk factors for the incidence of American cutaneous leishmaniasis in a sub-andean zone of Colombia (Chaparral, Tolima). Am J Trop Med Hyg. 2010;82(2):243–50.
dc.relationDesjeux P. Leishmaniasis: Current situation and new perspectives. Comp Immunol Microbiol Infect Dis. 2004;27(5):305–18.
dc.relationMarques MJ, Volpini AC, Genaro O, Mayrink W, Romanha AJ. Simple form of clinical sample preservation and leishmania DNA extraction from human lesions for diagnosis of American cutaneous leishmaniasis via polymerase chain reaction. Am J Trop Med Hyg. 2001;65(6):902–6.
dc.relationBensoussan E, Nasereddin A, Jonas F, Schnur LF, Jaffe CL. Comparison of PCR assays for diagnosis of cutaneous leishmaniasis. J Clin Microbiol. 2006;44(4):1435–9.
dc.relationChargui N, Bastien P, Kallel K, Haouas N, Akrout FM, Masmoudi A, et al. Usefulness of PCR in the diagnosis of cutaneous leishmaniasis in Tunisia. Trans R Soc Trop Med Hyg. 2005;99(10):762–8.
dc.relationKumar R, Bumb RA, Ansari NA, Mehta RD, Salotra P. Cutaneous leishmaniasis caused by Leishmania tropica in Bikaner, India: Parasite identification and characterization using molecular and immunologic tools. Am J Trop Med Hyg. 2007;76(5):896–901.
dc.relationGarcia AL, Parrado R, De Doncker S, Bermudez H, Dujardin JC. American tegumentary leishmaniasis: direct species identification of Leishmania in non-invasive clinical samples. Trans R Soc Trop Med Hyg. 2007;101(4):368–71.
dc.relationDeborggraeve S, Laurent T, Espinosa D, Van der Auwera G, Mbuchi M, Wasunna M, et al. A simplified and standardized polymerase chain reaction format for the diagnosis of leishmaniasis. J Infect Dis. 2008;198(10):1565–72.
dc.relationBoggild AK, Valencia BM, Espinosa D, Veland N, Ramos AP, Arevalo J, et al. Detection and species identification of Leishmania DNA from filter paper lesion impressions for patients with American cutaneous leishmaniasis. Clin Infect Dis. 2010;50(1):e1–6.
dc.relationBretagne S, Durand R, Olivi M, Garin JF, Sulahian A, Rivollet D, et al. Real-time PCR as a new tool for quantifying Leishmania infantum in liver in infected mice. Clin Diagn Lab Immunol. 2001;8(4):828–31.
dc.relationWortmann G, Hochberg L, Houng HH, Sweeney C, Zapor M, Aronson N, et al. Rapid identification of Leishmania complexes by a real-time PCR assay. Am J Trop Med Hyg. 2005;73(6):999–1004.
dc.relationAdams ER, Gomez MA, Scheske L, Rios R, Marquez R, Cossio A, et al. Sensitive diagnosis of cutaneous leishmaniasis by lesion swab sampling coupled to qPCR. Parasitology. 2014;141(14):1891–7.
dc.relationJara M, Adaui V, Valencia BM, Martinez D, Alba M, Castrillon C, et al. Real-time PCR assay for detection and quantification of Leishmania (Viannia) organisms in skin and mucosal lesions: Exploratory study of parasite load and clinical parameters. J Clin Microbiol. 2013;51(6):1826–33.
dc.relationCastilho TM, Marcelo L, Camargo A, Mcmahon-pratt D, Shaw JJ, Floeter-winter LM. A Real-Time Polymerase Chain Reaction Assay for the Identification and Quantification of American Leishmania Species on the Basis of Glucose-6-Phosphate Dehydrogenase. Trop Med. 2008;78(101):122–32.
dc.relationSchulz A, Mellenthin K, Scho G, Fleischer B, Drosten C. Detection, Differentiation, and Quantitation of Pathogenic. Society. 2003;41(4):1529–35.
dc.relationGhasemian M, Gharavi MJ, Akhlaghi L, Mohebali M, Meamar AR, Aryan E, et al. Development and Assessment of Loop-Mediated Isothermal Am- plification (LAMP) Assay for the Diagnosis of Human Visceral Leishmaniasis in Iran. Iran J Parasitol. 2014;9(1):50–9.
dc.relationKarani M, Sotiriadou I, Plutzer J, Karanis P. Bench-scale experiments for the development of a unified loop-mediated isothermal amplification (LAMP) assay for the in vitro diagnosis of Leishmania species’ promastigotes. Epidemiol Infect. 2014;142(8):1671–7.
dc.relationTakagi H, Itoh M, Islam MZ, Razzaque A, Ekram a RMS, Hashighuchi Y, et al. Sensitive, specific, and rapid detection of Leishmania donovani DNA by loopmediated isothermal amplification. Am J Trop Med Hyg. 2009;81(4):578–82.
dc.relationVerma S, Avishek K, Sharma V, Negi NS, Ramesh V, Salotra P. Application of loopmediated isothermal amplification assay for the sensitive and rapid diagnosis of visceral leishmaniasis and post-kala-azar dermal leishmaniasis. Diagn Microbiol Infect Dis. 2013;75(4):390–5.
dc.relationSchönian G, Nasereddin A, Dinse N, Schweynoch C, Schallig HDFH, Presber W, et al. PCR diagnosis and characterization of Leishmania in local and imported clinical samples. Diagn Microbiol Infect Dis. 2003;47(1):349–58.
dc.relationNasereddin A, Bensoussan-Hermano E, Schönian G, Baneth G, Jaffe CL. Molecular diagnosis of old world cutaneous leishmaniasis and species identification by use of a reverse line blot hybridization assay. J Clin Microbiol. 2008;46(9):2848–55.
dc.relationMarfurt J, Nasereddin A, Niederwieser I, Jaffe CL, Beck H, Felger I. Identification and Differentiation of. Society. 2003;41(7):3147–53.
dc.relationCastilho TM, Shaw JJ, Lucile M, Floeter-Winter LM. New PCR Assay Using Glucose-6-Phosphate Dehydrogenase for Identification of Leishmania Species. J Clin Microbiol. 2003;41(2):540–6.
dc.relationGuerbouj S, Victoir K, Guizani I, Seridi N, Nuwayri-Salti N, Belkaid M, et al. Gp63 gene polymorphism and population structure of Leishmania donovani complex: influence of the host selection pressure? Parasitology. 2001;122 Pt 1:25–35.
dc.relationGarcia L, Kindt A, Bermudez H, Llanos-cuentas A, Doncker S De, Arevalo J, et al. Culture-Independent Species Typing of Neotropical. Society. 2004;42(5):2294–7.
dc.relationda Silva LA, de Sousa C d S, da Gracca GC, Porrozzi R, Cupolillo E. Sequence analysis and PCR-RFLP profiling of the hsp70 gene as a valuable tool for identifying Leishmania species associated with human leishmaniasis in Brazil. Infect Genet Evol. 2010;10(1):77–83.
dc.relationTalmi-Frank D, Nasereddin A, Schnur LF, Schönian G, Töz SÖ, Jaffe CL, et al. Detection and identification of old world leishmania by high resolution melt analysis. PLoS Negl Trop Dis. 2010;4(1):4–8.
dc.relationRirie KM, Rasmussen RP, Wittwer CT. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem. 1997;245(2):154–60.
dc.relationApplied Biosystems. A Guide to High Resolution Melting (HRM). 2009.
dc.relationFoulet F, Botterel F, Buffet P, Morizot G, Rivollet D, Deniau M, et al. Detection and identification of Leishmania species from clinical specimens by using a real-time PCR assay and sequencing of the cytochrome b gene. J Clin Microbiol. 2007;45(7):2110–5.
dc.relationLuyo-Acero GE, Uezato H, Oshiro M, Takei K, Kariya K, Katakura K, et al. Sequence variation of the cytochrome b gene of various human infecting members of the genus Leishmania and their phylogeny. Parasitology [Internet]. 2004;128(Pt 5):483–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15180316
dc.relationMarco JD, Bhutto AM, Soomro FR, Baloch JH, Barroso PA, Kato H, et al. Multilocus enzyme electrophoresis and cytochrome B gene sequencing-based identification of Leishmania isolates from different foci of cutaneous leishmaniasis in Pakistan. Am J Trop Med Hyg. 2006;75(2):261–6.
dc.relationKato H, Cáceres AG, Gomez EA, Mimori T, Uezato H, Marco JD, et al. Short report: Molecular mass screening to incriminate sand fly vectors of Andean-type cutaneous leishmaniasis in Ecuador and Peru. Am J Trop Med Hyg. 2008;79(5):719–21.
dc.relationYang B-B, Chen D-L, Chen J-P, Liao L, Hu X-S, Xu J-N. Analysis of kinetoplast cytochrome b gene of 16 Leishmania isolates from different foci of China: different species of Leishmania in China and their phylogenetic inference. Parasit Vectors [Internet]. Parasites & Vectors; 2013;6(1):32. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3573894&tool=pmcentrez&rendertype=abstract
dc.relationMarco JD, Uezato H, Mimori T, Barroso PA, Korenaga M, Nonaka S, et al. Are cytochrome B gene sequencing and polymorphism-specific polymerase chain reaction as reliable as multilocus enzyme electrophoresis for identifying Leishmania spp. From Argentina? Am J Trop Med Hyg. 2006;75(2):256–60.
dc.relationJamjoom MB, Ashford RW, Bates P a, Kemp SJ, Noyes H a. Towards a standard battery of microsatellite markers for the analysis of the Leishmania donovani complex. Ann Trop Med Parasitol [Internet]. 2002;96(3):265–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12061973
dc.relationOchsenreither S, Kuhls K, Schaar M, Presber W, Schönian G. Multilocus microsatellite typing as a new tool for discrimination of Leishmania infantum MON1 strains. J Clin Microbiol. 2006;44(2):495–503.
dc.relationSchönian G, Kuhls K, Mauricio IL. Molecular approaches for a better understanding of the epidemiology and population genetics of Leishmania. Parasitology. 2011;138(4):405–25.
dc.relationZemanová E, Jirků M, Mauricio IL, Horák A, Miles MA, Lukeš J. The Leishmania donovani complex: Genotypes of five metabolic enzymes (ICD, ME, MPI, G6PDH, and FH), new targets for multilocus sequence typing. Int J Parasitol. 2007;37(2):149–60.
dc.relationTsukayama P, Lucas C, Bacon DJ. Typing of four genetic loci discriminates among closely related species of New World Leishmania. Int J Parasitol [Internet]. Australian Society for Parasitology Inc.; 2009;39(3):355–62. Available from: http://dx.doi.org/10.1016/j.ijpara.2008.08.004
dc.relationSoto J, Arana B a, Toledo J, Rizzo N, Vega JC, Diaz A, et al. Miltefosine for new world cutaneous leishmaniasis. Clin Infect Dis. 2004;38(9):1266–72.
dc.relationSoto J, Toledo J, Vega J, Berman J. Short report: Efficacy of pentavalent antimony for treatment of Colombian cutaneous leishmaniasis. Am J Trop Med Hyg. 2005;72(4):421–2.
dc.relationSoto J, Soto P. Estado actual y futuro de la terapia anti-leishmaniásica en Colombia. 2006;26:194–206.
dc.relationArevalo J, Ramirez L, Adaui V, Zimic M, Tulliano G, Miranda-Verástegui C, et al. Influence of Leishmania (Viannia) species on the response to antimonial treatment in patients with American tegumentary leishmaniasis. J Infect Dis. 2007;195(12):1846–51.
dc.relationLlanos-Cuentas A, Tulliano G, Araujo-Castillo R, Miranda-Verastegui C, Santamaria Castrellon G, Ramirez L, et al. Clinical and Parasite Species Risk Factors for Pentavalent Antimonial Treatment Failure in Cutaneous Leishmaniasis in Peru. Clin Infect Dis [Internet]. 2008;46(2):223–31. Available from: http://cid.oxfordjournals.org/lookup/doi/10.1086/524042
dc.relationCupolillo E, Brahim LR, Toaldo CB, Oliveira-Neto MPMPDMP, Brito MEF, Falqueto A, et al. Genetic Polymorphism and Molecular Epidemiology of Leishmania ( Viannia ) braziliensis from Different Hosts and Geographic Areas in Brazil. J Clin Microbiol. 2003;41(7):3126–32.
dc.relationMauricio IL, Yeo M, Baghaei M, Doto D, Pratlong F, Zemanova E, et al. Towards multilocus sequence typing of the Leishmania donovani complex: Resolving genotypes and haplotypes for five polymorphic metabolic enzymes (ASAT, GPI, NH1, NH2, PGD). Int J Parasitol. 2006;36(7):757–69.
dc.relationMaurício IL, Stothard JR, Miles M a. The strange case of Leishmania chagasi. Parasitol Today. 2000;16(5):188–9.
dc.relationMartin-Sanchez J, Guilvard E, Acedo-Sanchez C, Wolf-Echeverri M, Sanchiz-Marin MC, Morillas-Marquez F. Phlebotomus perniciosus newstead, 1911, infection by various zymodemes of the Leishmania infantum complex in the Granada province (Southern Spain). Int J Parasitol. 1994;24(3):405–8.
dc.relationFerro C, Morrison a C, Torres M, Pardo R, Wilson ML, Tesh RB. Age structure, blood-feeding behavior, and Leishmania chagasi infection in Lutzomyia longipalpis (Diptera: Psychodidae) at an endemic focus of visceral leishmaniasis in Colombia. J Med Entomol. 1995;32(5):618–29.
dc.relationRotureau B. Ecology of the Leishmania species in the Guianan ecoregion complex. Am J Trop Med Hyg. 2006;74(1):81–96.
dc.relationMathers CD, Ezzati M, Lopez AD. Measuring the burden of neglected tropical diseases: The global burden of disease framework. PLoS Negl Trop Dis. 2007;1(2).
dc.relationPeña VH, Fernández GJ, Gómez-Palacio AM, Mejía-Jaramillo AM, Cantillo O, Triana-Chávez O. High-resolution melting (HRM) of the cytochrome B gene: A powerful approach to identify blood-meal sources in Chagas disease vectors. PLoS Negl Trop Dis. 2012;6(2).
dc.relationHajian-Tilaki K. Sample size estimation in diagnostic test studies of biomedical informatics. J Biomed Inform. 2014 Apr;48:193–204.
dc.relationLópez MC, Duque Beltrán S, Orozco Vargas LC, Camargo D, Gualdrón LE, Cáceres E, et al. Inmunodiagnóstico de la infección chagásica por ELISA. Biomédica, Rev del Inst Nac Salud. 1999;19(2):159–63.
dc.relationClinical and Laboratory Standards Institute. CLSI. Quantitative Molecular Methods for Infectious Diseases ; Approved Guideline — Second Edition. 2010 p. 80.
dc.relationMelo MF, Moreira OC, Tenório P, Lorena V, Lorena-Rezende I, Júnior WO, et al. Usefulness of real time PCR to quantify parasite load in serum samples from chronic Chagas disease patients. Parasit Vectors [Internet]. 2015;8:154. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4369093&tool=pmcentrez&rendertype=abstract
dc.relationLeón CM, Hernández C, Montilla M, Ramírez JD. Retrospective distribution of Trypanosoma cruzi I genotypes in Colombia. Mem Inst Oswaldo Cruz [Internet]. 2015;110(3):387–93. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S007402762015000300387&lng=en&nrm=iso&tlng=en
dc.relationVilla LM, Guhl F, Zabala D, Ramírez JD, Urrea DA, Hernández DC, et al. The identification of two Trypanosoma cruzi I genotypes from domestic and sylvatic transmission cycles in Colombia based on a single polymerase chain reaction amplification of the spliced-leader intergenic region. Mem Inst Oswaldo Cruz. 2013;108(7):932–5.
dc.relationHernández C, Cucunubá Z, Parra E, Toro G, Zambrano P, Ramírez JD. Chagas disease (Trypanosoma cruzi) and HIV co-infection in Colombia. Int J Infect Dis [Internet]. 2014;26:146–8. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1201971214014969
dc.relationde Noya BA, Díaz-Bello Z, Colmenares C, Zavala-Jaspe R, Abate T, Contreras R, et al. The performance of laboratory tests in the management of a large outbreak of orally transmitted Chagas disease. Mem Inst Oswaldo Cruz. 2012;107(7):893–8.
dc.relationSouza-Lima R de C, Barbosa M das GV, Coura JR, Arcanjo ARL, Nascimento A da S, Ferreira JMBB, et al. Outbreak of acute Chagas disease associated with oral transmission in the Rio Negro region, Brazilian Amazon. Rev Soc Bras Med Trop. 2013;46(4):510–4.
dc.relationBlanchet D, Brenière SF, Schijman AG, Bisio M, Simon S, Véron V, et al. First report of a family outbreak of Chagas disease in French Guiana and posttreatment follow-up. Infect Genet Evol [Internet]. Elsevier B.V.; 2014;28:245–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25448161
dc.relationLana M De, Lopes L a, Martins HR, Bahia MT, Machado-de-Assis GF, Wendling AP, et al. Clinical and laboratory status of patients with chronic Chagas disease living in a vector-controlled area in Minas Gerais, Brazil, before and nine years after aetiological treatment. Mem Inst Oswaldo Cruz [Internet]. 2009;104(8):1139–47. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20140375
dc.relationLacunza CD, Negrette OS, Mora MC, García Bustos MF, Basombrío MÁ. Uso de la reacción en cadena de la polimerasa para el control terapéutico de la infección crónica por Trypanosoma cruzi. Rev Patol Trop [Internet]. 2015;44(1):21–32. Available from: http://www.revistas.ufg.br/index.php/iptsp/article/view/34815
dc.relationFlávia Nardy A, Freire-de-Lima CG, Morrot A. Immune Evasion Strategies of Trypanosoma cruzi. J Immunol Res. 2015;2015:178947.
dc.relationBustamante JM, Novarese M, Rivarola HW, Lo Presti MS, Fernández AR, Enders JE, et al. Reinfections and Trypanosoma cruzi strains can determine the prognosis of the chronic chagasic cardiopathy in mice. Parasitol Res. 2007;100(6):1407–10.
dc.relationCastro a M, Luquetti a O, Rassi a, Rassi GG, Chiari E, Galvão LMC. Blood culture and polymerase chain reaction for the diagnosis of the chronic phase of human infection with Trypanosoma cruzi. Parasitol Res. 2002;88:894–900.
dc.relationElias MCQB, Vargas NS, Zingales B, Schenkman S. Organization of satellite DNA in the genome of Trypanosoma cruzi. Mol Biochem Parasitol. 2003;129(1):1–9.
dc.relationMartins C, Baptista CS, Ienne S, Cerqueira GC, Bartholomeu DC, Zingales B. Genomic organization and transcription analysis of the 195-bp satellite DNA in Trypanosoma cruzi. Mol Biochem Parasitol [Internet]. 2008;160(1):60–4. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0166685108000674
dc.relationDuffy T, Bisio M, Altcheh J, Burgos JM, Diez M, Levin MJ, et al. Accurate real-time PCR strategy for monitoring bloodstream parasitic loads in chagas disease patients. PLoS Negl Trop Dis. 2009;3(4).
dc.relationSolari A, Ortíz S, Soto A, Arancibia C, Campillay R, Contreras M, et al. JAC Treatment of Trypanosoma cruzi -infected children with nifurtimox : a 3 year followup by PCR. 2001;515–9.
dc.relationMurcia L, Carrilero B, Muñoz MJ, Iborra MA, Segovia M. Usefulness of PCR for monitoring benznidazole response in patients with chronic Chagas’ disease: a prospective study in a non-disease-endemic country. J Antimicrob Chemother [Internet]. 2010;65(8):1759–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20542903
dc.relationMolina I, Gómez i Prat J, Salvador F, Treviño B, Sulleiro E, Serre N, et al. Randomized Trial of Posaconazole and Benznidazole for Chronic Chagas’ Disease. N Engl J Med [Internet]. 2014;370(20):1899–908. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa1313122
dc.relationRumi MMM, Pérez Brandán C, Gil JF, D’Amato a. MA, Ragone PG, Lauthier JJ, et al. Benznidazole treatment in chronic children infected with Trypanosoma cruzi: Serological and molecular follow-up of patients and identification of Discrete Typing Units. Acta Trop [Internet]. Elsevier B.V.; 2013;128(1):130–6. Available from: http://dx.doi.org/10.1016/j.actatropica.2013.07.003
dc.relationFLORES-CHAVEZ M, BOSSENO MF, BASTRENTA B, ALCAZAR DALENZ JL, HONTEBEYRIE M, REVOLLO S, et al. Polymerase Chain Reaction Detection and Serologic Follow-Up After Treatment With Benznidazole in Bolivian Children Infected With a Natural Mixture of Trypanosoma cruzi I and Ii. Am J Trop Med Hyg. 2006;75(3):497–501.
dc.relationGalvão LMC, Chiari E, Macedo AM, Luquetti AO, Silva SA, Andrade ALSS. PCR assay for monitoring Trypanosoma cruzi parasitemia in childhood after specific chemotherapy. J Clin Microbiol [Internet]. 2003;41(11):5066–70. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=262508&tool=pmcentrez&rendertype=abstract
dc.relationGonzalez A, Prediger E, Huecas MEME, Nogueirat N, Lizardi PMPM, Nogueira N, et al. Minichromosomal repetitive DNA in Trypanosoma cruzi: its use in a highsensitivity parasite detection assay. Proc Natl Acad Sci U S A. 1984;81:3356–60.
dc.relationSales-Campos H, Kappel HB, Andrade CP, Lima TP, Castilho A de, Giraldo LER, et al. Trypanosoma cruzi DTU TcII presents higher blood parasitism than DTU TcI in an experimental model of mixed infection. Acta Parasitol [Internet]. 2015;60(3):435–41. Available from: http://www.degruyter.com/view/j/ap.2015.60.issue-3/ap-20150060/ap-2015-0060.xml
dc.relationNicholls RS, Cucunubá Pérez ZM, Knudson a, Flórez AC, Montilla M, Puerta Bula CJ, et al. Enfermedad de Chagas aguda en Colombia, una entidad poco sospechada. Informe de 10 casos presentados en el periodo 2002 a 2005. Biomédica Rev del Inst Nac Salud [Internet]. 2005;25:115. Available from: http://search.scielo.org/resources/art-S0120-41572007000500002col#.UlWpLr9TCbc.mendeley
dc.relationMarcili A, Valente VC, Valente SA, Junqueira ACV, Silva FM da, Pinto AY das N, et al. Trypanosoma cruzi in Brazilian Amazonia: Lineages TCI and TCIIa in wild primates, Rhodnius spp. and in humans with Chagas disease associated with oral transmission. Int J Parasitol [Internet]. Australian Society for Parasitology Inc.; 2009;39(5):615–23. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0020751908004086
dc.relationValente SADS, da Costa Valente V, das Neves Pinto AY, de Jesus Barbosa César M, dos Santos MP, Miranda COS, et al. Analysis of an acute Chagas disease outbreak in the Brazilian Amazon: human cases, triatomines, reservoir mammals and parasites. Trans R Soc Trop Med Hyg. 2009;103(3):291–7.
dc.relationRamírez JD, Duque MC, Montilla M, Cucunubá Z, Guhl F. Natural and emergent Trypanosoma cruzi I genotypes revealed by mitochondrial (Cytb) and nuclear (SSU rDNA) genetic markers. Exp Parasitol. 2012;132:487–94.
dc.relationCruz L, Vivas A, Montilla M, Hernández C, Flórez C, Parra E, et al. Comparative study of the biological properties of Trypanosoma cruzi I genotypes in a murine experimental model. Infect Genet Evol [Internet]. Elsevier B.V.; 2015;29:110–7. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1567134814004158
dc.relationCoura JR, de Abreu LL, Willcox HP, Petana W. [Comparative controlled study on the use of benznidazole, nifurtimox and placebo, in the chronic form of Chagas’ disease, in a field area with interrupted transmission. I. Preliminary evaluation]. Rev Soc Bras Med Trop. 1997 Apr;30(2):139–44.
dc.relationMachado-de-Assis GF, Silva AR, Do Bem VAL, Bahia MT, Martins-Filho OA, Dias JCP, et al. Posttherapeutic cure criteria in chagas’ disease: conventional serology followed by supplementary serological, parasitological, and molecular tests. Clin Vaccine Immunol. 2012;19(8):1283–91.
dc.relationMachado-de-Assis GF, Diniz GA, Montoya RA, Dias JCP, Coura JR, MachadoCoelho GLL, et al. A serological, parasitological and clinical evaluation of untreated Chagas disease patients and those treated with benznidazole before and thirteen years after intervention. Mem Inst Oswaldo Cruz. 2013;108(7):873–80.
dc.relationJackson Y, Chatelain E, Mauris A, Holst M, Miao Q, Chappuis F, et al. Serological and parasitological response in chronic Chagas patients 3 years after nifurtimox treatment. BMC Infect Dis. 2013;13:85.
dc.relationMuñoz C, Zulantay I, Apt W, Ortiz S, Schijman AG, Bisio M, et al. Evaluation of nifurtimox treatment of chronic chagas disease by means of several parasitological methods. Antimicrob Agents Chemother. 2013;57(9):4518–23.
dc.relationEstani SS, Segura EL, Ruiz AM, Velazquez E, Porcel BM, Yampotis C. Efficacy of chemotherapy with benznidazole in children in the indeterminate phase of Chagas’ disease. Am J Trop Med Hyg. 1998;59(4):526–9.
dc.relationCançado JR. Long term evaluation of etiological treatment of Chagas disease with benznidazole. Rev Inst Med Trop Sao Paulo. 2002;44(1):29–37.
dc.relationSchijman AG, Altcheh J, Burgos JM, Biancardi M, Bisio M, Levin MJ, et al. Aetiological treatment of congenital Chagas’ disease diagnosed and monitored by the polymerase chain reaction. J Antimicrob Chemother. 2003;52(3):441–9.
dc.relationViotti R, Vigliano C, Armenti H, Segura E. Treatment of chronic Chagas’ disease with benznidazole: Clinical and serologic evolution of patients with long-term follow-up. Am Heart J. 1994;127(1):151–62.
dc.relationSosa-Estani S, Viotti R, Segura EL. Therapy, diagnosis and prognosis of chronic Chagas disease: Insight gained in Argentina. Mem Inst Oswaldo Cruz. 2009;104(SUPPL. 1):167–80.
dc.relationFabbro DL, Streiger ML, Arias ED, Bizai ML, Del Barco M, Amicone NA. Trypanocide treatment among adults with chronic Chagas disease living in Santa Fe City (Argentina), over a mean follow-up of 21 years: Parasitological, serological and clinical evolution. Rev Soc Bras Med Trop. 2007 Feb;40(1):1–10.
dc.relationLacunza CD, Negrete OS, Mora MC. Use of the polymerase chain reaction (PCR) for early evaluation of etiological treatment in young adults, chronically infected with Trypanosoma cruzi. Rev Patol Trop. 2006;35(4400):227–32.
dc.relationMeira WSF, Castro AM De, Gontijo ED, Rassi A, Alejandro O, Machado-coelho GLL, et al. Avalialáo dos testes de Hemocultura , Lise Mediada pelo Complemento e Realáo em Cadeia da Polimerase na verificaláo de eficácia terapéutica na doenla de Chagas. Rev Soc Bras Med Trop. 2006;39(Suplemento III):107–9.
dc.relationAguiar C, Batista AM, Pavan TBS, Almeida EA, Guariento ME, Wanderley JS, et al. Serological profiles and evaluation of parasitaemia by PCR and blood culture in individuals chronically infected by Trypanosoma cruzi treated with benzonidazole. Trop Med Int Heal. 2012;17(3):368–73.
dc.relationBraga MS, Lauria-Pires L, Argañaraz ER, Nascimento RJ, Teixeira ARL. Persistent infections in chronic chagas’ disease patients treated with anti-Trypanosoma cruzi nitroderivatives. Rev Inst Med Trop Sao Paulo. 2000;42(3):157–61.
dc.relationFernandes CD, Tiecher FM, Balbinot MM, Liarte DB, Scholl D, Steindel M, et al. Efficacy of benznidazol treatment for asymptomatic chagasic patients from state of Rio Grande do Sul evaluated during a three years follow-up. Mem Inst Oswaldo Cruz. 2009;104(1):27–32.
dc.relationAndrade SG, Magalhaes JB, Pontes AL. Evaluation of chemotherapy with benznidazole and nifurtimox in mice infected with Trypanosoma cruzi strains of different types. Bull World Health Organ. 1985;63(4):721–6.
dc.relationMejía-Jaramillo AM, Fernández GJ, Montilla M, Nicholls RS, Triana-Chávez O. Sensibilidad al benzonidazol de cepas de Trypanosoma cruzi sugiere la circulación de cepas naturalmente resistentes en Colombia. Biomédica, Rev del Inst Nac Salud [Internet]. 2012;32(2):196–205.
dc.relationCampos RF, Guerreiro MLS, De Souza Castro Sobral K, Cunha Lima RDCP, Andrade SG. Response to chemotherapy with benznidazole of clones isolated from the 21SF strain of Trypanosoma cruzi (biodeme Type II, Trypanosoma cruzi II). Rev Soc Bras Med Trop. 2005;38(2):142–6.
dc.relationTeston APM, Monteiro WM, Reis D, Bossolani GDP, Gomes ML, de Araújo SM, et al. In vivo susceptibility to benznidazole of Trypanosoma cruzi strains from the western Brazilian Amazon. Trop Med Int Heal. 2013;18(1):85–95.
dc.relationUehara LA, Moreira OC, Oliveira AC, Azambuja P, Lima APCA, Britto C, et al. Cruzipain Promotes Trypanosoma cruzi Adhesion to Rhodnius prolixus Midgut. PLoS Negl Trop Dis. 2012;6(12).
dc.relationGómez-Melendro EN, Hernández C, González-Uribe C, Brochero H. First Record of Triatoma maculata (Erichson, 1848) (Hemiptera: Reduviidae: Triatomini) in the Municipality of Riohacha, La Guajira Colombia. Front Public Heal. 2014;2(219):1–9.
dc.relationDeane MP, Lenzi HL, Jansen A. Trypanosoma cruzi: vertebrate and invertebrate cycles in the same mammal host, the opossum Didelphis marsupialis. Memorias do Instituto Oswaldo Cruz. 1984. p. 513–5.
dc.relationCantillo-Barraza O, Garcés E, Gómez-Palacio A, Cortés LA, Pereira A, Marcet PL, et al. Eco-epidemiological study of an endemic Chagas disease region in northern Colombia reveals the importance of Triatoma maculata (Hemiptera: Reduviidae), dogs and Didelphis marsupialis in Trypanosoma cruzi maintenance. Parasit Vectors [Internet]. 2015;8(1):482.
dc.relationCantillo-Barraza O, Chaverra D, Marcet P, Arboleda-Sánchez S, Triana-Chávez O. Trypanosoma cruzi transmission in a Colombian Caribbean region suggests that secondary vectors play an important epidemiological role. Parasit Vectors [Internet]. 2014;7(1):381. Available from: http://www.parasitesandvectors.com/content/7/1/381
dc.relationLuitgards-Moura JF, Vargas AB, Almeida CE, Magno-Esperança G, Agapito-Souza R, Folly-Ramos E, et al. A Triatoma maculata (hemiptera, reduviidae, triatominae) population from Roraima, Amazon Region, Brazil, has some bionomic characteristics of a potential Chagas disease vector. Rev Inst Med Trop Sao Paulo. 2005;47(3):131–7.
dc.relationGarcía-Alzate R, Lozano-Arias D, Reyes-Lugo RM, Morocoima A, Herrera L, Mendoza-León A. Triatoma maculata, the Vector of Trypanosoma cruzi, in Venezuela. Phenotypic and Genotypic Variability as Potential Indicator of Vector Displacement into the Domestic Habitat. Front public Heal [Internet]. 2014;2(September):170. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4179684&tool=pmcentrez&rendertype=abstract
dc.relationRojas ME, Várquez P, Villarreal MF, Velandia C, Vergara L, Morán-Borges YH, et al. An entomological and seroepidemiological study of Chagas’ disease in an area in central-western Venezuela infested with Triatoma maculata (Erichson 1848). Cad saude publica / Minist da Saude, Fund Oswaldo Cruz, Esc Nac Saude Publica. 2008;24(10):2323–33.
dc.relationEspinola H, Rodríguez M d. BRT. Informaciones sobre la biología y el ciclo de vida de Triatoma maculata (Erichson,1848)(Hemiptera,Reduviidae,Triatominae),en condiciones de laboratorio. BolDirMalariolSanAmb. 1981;21:141–2.
dc.relationTonn R, Otero E, Mora H, R.Carcavallo. Aspectos biológicos,ecológicos y distribución geográfica de Triatoma maculata (Erichson,1848), (Hemiptera,Reduviidae),en Venezuela. BolDir MalariolSanAmb. 1978;18:16–24.
dc.relationFeliciangeli M, Rabinovich J. Vital statistics of triatominae (Hemiptera:Reduviidae)under laboratory conditions. J Med Entomol. 1985;22:43–8.
dc.relationLuitgards-Moura JF, Borges-Pereira J, Costa J, Zauza PL, Rosa-Freitas MG. On the possibility of autochthonous chagas disease in Roraima, Amazon Region, Brazil, 2000-2001. Rev Inst Med Trop Sao Paulo. 2005;47(1):45–54.
dc.relationEscalante ME, Gomez D, Silvera LA, Sánchez G, Venegas J. Detection of high percentage of Trypanosoma cruzi infection, the etiologic agent of Chagas disease, in wild populations of Colombian Caribbean triatomines. Acta Parasitol. 2015;60(2):315–21.
dc.relationPatterson JS, Barbosa SE, Feliciangeli MD. On the genus Panstrongylus Berg 1879: Evolution, ecology and epidemiological significance. Acta Trop. 2009;110(2–3):187– 99.
dc.relationAngulo VM, Esteban L, Luna KP. Attalea butyracea próximas a las viviendas como posible fuente de infestación domiciliaria por Rhodnius prolixus (Hemiptera: Reduviidae) en los Llanos Orientales de Colombia. Biomédica. 2012;32(2):277–85.
dc.relationSerrano O, Mendoza F, Suárez B, Soto A. Seroepidemiología de la enfermedad de Chagas en dos localidades del municipio Costa de Oro, Estado de Aragua, Venezuela. Biomédica Rev Del Inst Nac Salud [Internet]. 2008;28(1):108–15. Available from: http://search.ebscohost.com/login.aspx?direct=true&db=mnh&AN=18645666&lang=es&site=ehost-live
dc.relationMaeda FY, Cortez C, Alves RM, Yoshida N. Mammalian cell invasion by closely related Trypanosoma species T. dionisii and T. cruzi. Acta Trop [Internet]. Elsevier B.V.; 2012;121(2):141–7. Available from: http://dx.doi.org/10.1016/j.actatropica.2011.10.017
dc.relationReyes-lugo M. Panstrongylus geniculatus Latreille 1811 ( Hemiptera : Reduviidae : Triatominae ), vector de la enfermedad de Chagas en el ambiente domiciliario del centro-norte de Venezuela. Medicina (B Aires). 2009;20(3):180–205.
dc.relationValente VC, Valente SA, Noireau F, Carrasco HJ, Miles MA. Chagas disease in the Amazon Basin: association of Panstrongylus geniculatus (Hemiptera: Reduviidae) with domestic pigs. J Med Entomol [Internet]. 1998;35(2):99–103. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9538568
dc.relationFeliciangeli MD, Carrasco H, Patterson JS, Suarez B, Martínez C, Medina M. Mixed domestic infestation by Rhodnius prolixus StäL, 1859 and Panstrongylus geniculatus Latreille, 1811, vector incrimination, and seroprevalence for Trypanosoma cruzi among inhabitants in El Guamito, Lara State, Venezuela. Am J Trop Med Hyg. 2004;71(4):501–5.
dc.relationCarrasco HJ, Torrellas A, García C, Segovia M, Feliciangeli MD. Risk of Trypanosoma cruzi I (Kinetoplastida: Trypanosomatidae) transmission by Panstrongylus geniculatus (Hemiptera: Reduviidae) in Caracas (Metropolitan District) and neighboring States, Venezuela. Int J Parasitol. 2005;35(13):1379–84.
dc.relationCarrasco HJ, Segovia M, Londoño JC, Ortegoza J, Rodríguez M, Martínez CE. Panstrongylus geniculatus and four other species of triatomine bug involved in the Trypanosoma cruzi enzootic cycle: high risk factors for Chagas’ disease transmission in the Metropolitan District of Caracas, Venezuela. Parasit Vectors [Internet]. 2014;7(1):1003–28. Available from: 10.1186/s13071-014-0602-7%5Cnhttp://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=10034360 0&lang=es&site=ehost-live
dc.relationMaestre-Serrano R, Eyes-Escalante M. Actualización de la presencia y distribución de triatominos en el departamento del Atlántico-Colombia: 2003-2010. Bol Malariol y Salud Ambient. 2012;52(1):125–8.
dc.relationJácome-Pinilla D, Hincapie-Peñaloza E, Ortiz MI, Ramírez JD, Guhl F, Molina J. Risks associated with dispersive nocturnal flights of sylvatic Triatominae to artificial lights in a model house in the northeastern plains of Colombia. Parasit Vectors [Internet]. Parasites & Vectors; 2015;8(1):600. Available from: http://www.parasitesandvectors.com/content/8/1/600
dc.relationde Noya BA, Díaz-Bello Z, Colmenares C, Ruiz-Guevara R, Mauriello L, MuñozCalderón A, et al. Update on oral chagas disease outbreaks in Venezuela: Epidemiological, clinical and diagnostic approaches. Mem Inst Oswaldo Cruz. 2015;110(3):377–86.
dc.relationMolinari J, Aldana E, Nassar JM. Panstrongylus geniculatus (Heteroptera: Reduviidae: Triatominae): Natural infection with Trypanosoma cruzi under cavernicolous conditions in Paraguaná Peninsula, Venezuela. J Cave Karst Stud. 2007;69(2):285–7.
dc.relationAldana E, Heredia-Coronado E, Avendaño-Rangel F, Lizano E, Concepción JL, Bonfante- abarcas R, et al. Morphometric analysis of Panstrongylus geniculatus (Heteroptera: Reduviidae) from Caracas City, Venezuela. Biomédica [Internet]. 2011;31:108–17. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S012041572011000100013&lng=en&nrm=iso&tlng=en
dc.relationHurtado LA, Calzada JE, Pineda V, González K, Santamaría AM, Cáceres L, et al. Conocimientos y factores de riesgo relacionados con la enfermedad de Chagas en dos comunidades panameñas donde Rhodnius pallescens es el vector principal. Biomédica [Internet]. 2014;34:260–70. Available from: http://dx.doi.org/10.7705/biomedica.v34i2.2133
dc.relationGottdenker NL, Chaves LF, Calzada JE, Saldaña A, Carroll CR. Host Life History Strategy, Species Diversity, and Habitat Influence Trypanosoma cruzi Vector Infection in Changing Landscapes. PLoS Negl Trop Dis. 2012;6(11):5–7.
dc.relationZeledón R, Marín F, Calvo N, Lugo E, Valle S. Distribution and ecological aspects of Rhodnius pallescens in Costa Rica and Nicaragua and their epidemiological implications. Mem Inst Oswaldo Cruz. 2006;101(1):75–9.
dc.relationCalzada JE, Pineda V, Montalvo E, Alvarez D, Santamaría AM, Samudio F, et al. Human trypanosome infection and the presence of intradomicile Rhodnius pallescens in the western border of the Panama Canal, Panama. Am J Trop Med Hyg. 2006;74(5):762–5.
dc.relationCantillo-Barraza O, Gómez-Palacio A, Salazar D, Mejía-Jaramillo AM, Calle J, Triana O. [Distribution and ecoepidemiology of the triatomine fauna (Hemiptera: Reduviidae) in Margarita Island, Bolívar, Colombia]. Biomedica [Internet]. 2010;30(3):382–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21713340
dc.relationJaramillo N, Schofield CJ, Gorla D, Caro-Riaño H, Moreno J, Mejia E, et al. The Role of Rhodnius pallescens as a vector of Chagas disease in Colombia and Panama. Res Rev Parasitol. 2000;60(3–4):75–82.
dc.relationParra-henao G, Angulo V, Jaramillo N, Restrepo M. Triatominos (Hemiptera: Reduviidae) de la Sierra Nevada de Santa Marta, Colombia. Aspectos epidemiológicos, entomológicos y de distribución. Rev CES Med. 2009;23(1):17–26.
dc.relationRomaña CA, Pizarro JC, Rodas E, E G. Palm trees as ecological indicators of risk areas for Chagas disease. Trans R Soc Trop Med Hyg. 1999;93(January 2016):594–5.
dc.relationPineda V, Montalvo E, Alvarez D, Santamaría AM, Calzada JE, Saldaña A. Feeding sources and trypanosome infection index of Rhodnius pallescens in a Chagas disease endemic area of Amador County, Panama. Rev Inst Med Trop Sao Paulo. 2008;50(2):113–6.
dc.relationPipkin AC. Domiciliary Reduviid Bugs And The Epidemiology Of Chagas’ Disease In Panama (Hemiptera: Reduviidae: Triatominae). J Med Entomol [Internet]. 1968;5(1):107–24. Available from: http://jme.oxfordjournals.org/content/5/1/107.abstract
dc.relationDe Vasquez AM, Samudio FE, Saldaña A, Paz HM, Calzada JE. Eco-epidemiological aspects of Trypanosoma cruzi, Trypanosoma rangeli and their vector (Rhodnius pallescens) in Panama. Rev Inst Med Trop Sao Paulo. 2004;46(4):217–22.
dc.relationAlarcón BDN, Díaz-bello Z, Colmenares C, Zavala-jaspe R. Transmisión urbana de la enfermedad de Chagas en Caracas, Venezuela: aspectos epidemiológicos, clínicos y de laboratorio. Medicina (B Aires). 2009;20(3):158–64.
dc.relationAlarcón de Noya B, Díaz-Bello Z, Colmenares C, Ruiz-Guevara R, Mauriello L, Zavala-Jaspe R, et al. Large urban outbreak of orally acquired acute Chagas disease at a school in Caracas, Venezuela. J Infect Dis. 2010;201(9):1308–15.
dc.relationShikanai-Yasuda MA, Marcondes CB, Guedes LA, Siqueira GS, Barone AA, Dias JC, et al. Possible oral transmission of acute Chagas’ disease in Brazil. Revista do Instituto de Medicina Tropical de Sao Paulo. 1991. p. 351–7.
dc.relationDíaz ML, Leal S, Mantilla JC, Molina-Berríos A, López-Muñoz R, Solari A, et al. Acute Chagas outbreaks: molecular and biological features of Trypanosoma cruzi isolates, and clinical aspects of acute cases in Santander, Colombia. Parasit Vectors [Internet]. Parasites & Vectors; 2015;8(1):608. Available from: http://www.parasitesandvectors.com/content/8/1/608
dc.relationDíaz-Bello Z, Thomas MC, López MC, Zavala-Jaspe R, Noya O, DE Noya BA, et al. Trypanosoma cruzi genotyping supports a common source of infection in a schoolrelated oral outbreak of acute Chagas disease in Venezuela. Epidemiol Infect [Internet]. 2014;142(1):156–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23544849
dc.relationMuñoz-Calderón a., Díaz-Bello Z, Valladares B, Noya O, López MC, Alarcón de Noya B, et al. Oral transmission of Chagas disease: Typing of Trypanosoma cruzi from five outbreaks occurred in Venezuela shows multiclonal and common infections in patients, vectors and reservoirs. Infect Genet Evol [Internet]. 2013;17:113–22.
dc.relationSteindel M, Kramer Pacheco L, Scholl D, Soares M, de Moraes MH, Eger I, et al. Characterization of Trypanosoma cruzi isolated from humans, vectors, and animal reservoirs following an outbreak of acute human Chagas disease in Santa Catarina State, Brazil. Diagn Microbiol Infect Dis. 2008;60(1):25–32.
dc.relationAndrade SG, Campos RF, Steindel M, Guerreiro ML, Magalhues JB, de Almeida MC, et al. Biological, biochemical and molecular features of Trypanosoma cruzi strains isolated from patients infected through oral transmission during a 2005 outbreak in the state of Santa Catarina, Brazil: Its correspondence with the new T. cruzi taxonomy consensu. Mem Inst Oswaldo Cruz. 2011;106(8):948–56.
dc.relationNobrega AA, Garcia MH, Tatto E, Obara MT, Costa E, Sobel J, et al. Oral transmission of chagas disease by consumption of Acai palm fruit, Brazil. Emerg Infect Dis. 2009;15(4):653–5.
dc.relationDias JP, Bastos C, Araujo E, Mascarenhas AV, Martins Netto E, Grassi F, et al. Acute Chagas disease outbreak associated with oral transmission. Rev Soc Bras Med Trop. 2008;41(3):296–300.
dc.relationBarbosa RL, Dias VL, Pereira KS, Schmidt FL, Franco RMB, Guaraldo AMA, et al. Survival In Vitro and Virulence of Trypanosoma cruzi in Açaí Pulp in Experimental Acute Chagas Disease. J Food Prot. 2012;75(3):601–6.
dc.relationSuárez DC, Rey ÁP, Orduz ML, Prada RL, Tarazona Z. Supervivencia de Trypanosoma cruzi en bebidas experimentalmente contaminadas. Biomédica, Rev del Inst Nac Salud [Internet]. 2012;32(1):134–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23235795
dc.relationCardoso AVN, Lescano SAZ, Amato Neto V, Gakiya É, Santos S V. Survival of Trypanosoma cruzi in sugar cane used to prepare juice. Rev Inst Med Trop Sao Paulo. 2006;48(5):287–9.
dc.relationNicholls RS, Cucunubá ZM, Knudson A, Flórez AC, Montilla M, Puerta CJ, et al. Acute Chagas disease in Colombia: a rarely suspected disease. Report of 10 cases presented during the 2002-2005 period. Biomedica. 2007;27 Suppl 1:8–17.
dc.relationMarsden P, Hagstrom J. Trypanosoma cruzi in the saliva of beagle puppies. Trans R Soc Trop Med Hyg. 1966;60(2):189–91.
dc.relationBeltrão H de BM, Cerroni M de P, Freitas DRC de, Pinto AY das N, Valente V da C, Valente SA, et al. Investigation of two outbreaks of suspected oral transmission of acute Chagas disease in the Amazon region, Para State, Brazil, in 2007. Trop Doct. 2009;39(4):231–2.
dc.relationEl Tai N, Osman O, El Fari M, Presber W, Schönian G. Genetic heterogeneity of ribosomal internal transcribed spacer in clinical samples of Leishmania donovani spotted on filter paper as revealed by single-strand conformation polymorphisms and sequencing. Trans R Soc Trop Med Hyg. 2000;94(5):575–9.
dc.relationda Gracca GC, Volpini AC, Romero GAS, Neto MP de O, Hueb M, Porrozzi R, et al. Development and validation of PCR-based assays for diagnosis of American cutaneous leishmaniasis and identification of the parasite species. Mem Inst Oswaldo Cruz. 2012;107(5):664–74.
dc.relationCruz I, Millet A, Carrillo E, Chenik M, Salotra P, Verma S, et al. An approach for interlaboratory comparison of conventional and real-time PCR assays for diagnosis of human leishmaniasis. Exp Parasitol. 2013;134(3):281–9.
dc.relationRoelfsema JH, Nozari N, Herremans T, Kortbeek LM, Pinelli E. Evaluation and improvement of two PCR targets in molecular typing of clinical samples of Leishmania patients. Exp Parasitol. 2011;127(1):36–41.
dc.relationHernández C, Alvarez C, González C, Ayala MS, León CM, Ramírez JD. Identification of Six New World Leishmania species through the implementation of a High-Resolution Melting (HRM) genotyping assay. Parasit Vectors [Internet]. 2014;7(1):501. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4239372&tool=pmcentrez&rendertype=abstract
dc.relationHiguera SL, Guhl F, Ramírez JD. Identification of Trypanosoma cruzi Discrete Typing Units (DTUs) through the implementation of a High-Resolution Melting (HRM) genotyping assay. Parasit Vectors [Internet]. 2013;6:112. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3641988&tool=pmcentrez&rendertype=abstract
dc.relationTong SYC, Xie S, Richardson LJ, Ballard SA, Dakh F, Grabsch EA, et al. Highresolution melting genotyping of enterococcus faecium based on multilocus sequence typing derived single nucleotide polymorphisms. PLoS One. 2011;6(12).
dc.relationGoldschmidt P, Degorge S, Benallaoua D, Semoun O, Borsali E, Le Bouter A, et al. New strategy for rapid diagnosis and characterization of keratomycosis. Ophthalmology [Internet]. Elsevier Inc.; 2012;119(5):945–50. Available from: http://dx.doi.org/10.1016/j.ophtha.2011.10.038
dc.relationCosta JM, Cabaret O, Moukoury S, Bretagne S. Genotyping of the protozoan pathogen Toxoplasma gondii using high-resolution melting analysis of the repeated B1 gene. J Microbiol Methods [Internet]. Elsevier B.V.; 2011;86(3):357–63. Available from: http://dx.doi.org/10.1016/j.mimet.2011.06.017
dc.relationCeccarelli M, Galluzzi L, Migliazzo A, Magnani M. Detection and characterization of Leishmania (Leishmania) and Leishmania (Viannia) by SYBR green-based real-time PCR and high resolution melt analysis targeting kinetoplast minicircle DNA. PLoS One. 2014;9(2).
dc.relationBaneth G, Zivotofsky D, Nachum-Biala Y, Yasur-Landau D, Botero A-M. Mucocutaneous Leishmania tropica infection in a dog from a human cutaneous leishmaniasis focus. Parasit Vectors [Internet]. 2014;7:118. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3987837&tool=pmcentrez&rendertype=abstract
dc.relationNasereddin A, Jaffe CL. Rapid diagnosis of old world leishmaniasis by highresolution melting analysis of the 7sl RNA gene. J Clin Microbiol. 2010;48(6):2240–2.
dc.relationPita-Pereira D, Lins R, Oliveira MP, Lima RB, Pereira BA, Moreira OC, et al. SYBR Green-based Real-Time PCR targeting kinetoplast DNA can be used to discriminate between the main etiologic agents of Brazilian cutaneous and visceral leishmaniases. Parasit Vectors [Internet]. BioMed Central Ltd; 2012;5(1):15. Available from: http://www.parasitesandvectors.com/content/5/1/15
dc.relationMontalvo a M, Fraga J, Monzote L, Montano I, De Doncker S, Dujardin JC, et al. Heat-shock protein 70 PCR-RFLP: a universal simple tool for Leishmania species discrimination in the New and Old World. Parasitology. 2010;137(8):1159–68.
dc.relationCruz-Barrera ML, Ovalle-Bracho C, Ortegon-Vergara V, Pérez-Franco JE, Echeverry MC. Improving Leishmania species identification in different types of samples from cutaneous lesions. J Clin Microbiol. 2015;53(4):1339–41.
dc.relationSchonian G, Mauricio I, Cupolillo E. Is it time to revise the nomenclature of Leishmania? Trends Parasitol. 2010;26(10):466–9.
dc.relationD AME. M Araua1S233, D. A. Evans’, A. Zolessi’, A. Llanos Cuentas”’ and J. Arevalo’p2F4’. 1990;526–9.
dc.relationUrbano J, Ovalle CE, Rosales MJ, Camargo YC, Gutiérrez-Sánchez R, Marín C. Characterization of cutaneous isolates of Leishmania in Colombia by isoenzyme typing and kDNA restriction analysis. Rev Ibero-Latinoam Parasitol. 2011;70(March):16–24.
dc.relationJafari R, Najafzadeh N, Sedaghat MM, Parvizi P. Molecular characterization of sandflies and Leishmania detection in main vector of zoonotic cutaneous leishmaniasis in Abarkouh district of Yazd province, Iran. Asian Pac J Trop Med [Internet]. Hainan Medical College; 2013;6(10):792–7. Available from: http://dx.doi.org/10.1016/S1995-7645(13)60140-6
dc.relationGrimaldi G, Kreutzer RD, Hashiguchi Y, Gomez EA, Mimory T, Tesh RB. Description of Leishmania equatorensis sp. n (Kinetoplastida: Trypanosomatidae), a new parasite infecting arboreal mammals in Ecuador. Memorias do Instituto Oswaldo Cruz. 1992. p. 221–8.
dc.relationLoyola EG, Alzate A, Sánchez A, González A. Epidemiology of a natural focus of Leishmania braziliensis in the Pacific lowlands of Colombia. III. Natural infections in wild mammals. Trans R Soc Trop Med Hyg. 1988;82(3):406–7.
dc.relationAdler GH, Becerra MT, Travi BL. Feeding success of Lutzomyia evansi (Diptera: Psychodidae) experimentally exposed to small mammal hosts in an endemic focus of Leishmania chagasi in northern Colombia. Biomedica [Internet]. 2003;23(4):396–400. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14968917
dc.relationEresh S, de Bruijn M, Mendoza-León J, Barker D. Leishmania (Viannia) lainsoni occupies a unique niche within the subgenus Viannia. Trans R Soc Trop Med Hyg. 1995;89:231–6.
dc.relationCorrêa JR, Brazil RP, Soares MJ. Leishmania (Viannia) lainsoni (Kinetoplastida: Trypanosomatidae), a divergent Leishmania of the Viannia subgenus - A mini review. Mem Inst Oswaldo Cruz. 2005;100(6):587–92.
dc.relationSilveira F, Souza A, Lainson R, Shaw J, Braga R, Ishikawa E. Cutaneous leishmaniasis in the Amazon region: natural infection of the sandfly Lutzomyia ubiquitalis (Psychodidae: Phlebotominae) by Leishmania (Viannia) lainsoni in Pará state, Brazil. Mem Inst Oswaldo Cruz. 1991;86:127–130.
dc.relationCorredor-matus JR, Hernández C, Arias A. Evaluación de parámetros productivos y nutricionales por el uso de Lactobacilius acidophilus y Lactobacilius bifidus en la dieta del hámster dorado ( Mesocricetus auratus ). 2014;
dc.relationBonilla-Morales MM, Pulido J, Murillo R. Biología de la lapa: una perspectiva para la zoocría. Rev CES Med Vet y Zootec. 2013;8(1):129–42.
dc.relationGomez-Posada C. Patrón de ac tividad y de alimentación de un grupo aprovisionado de Cebus paella en un bosque húmedo tropical (Meta-Colombia). Bol Científico mueso Hist Nat. 2009;13(1):49–62.
dc.relationFerro C, Cárdenas E, Corredor D, Morales A, Munstermann LE. Life Cycle and Fecundity Analysis of Lutzomyia shannoni (Dyar) (Diptera: Psychodidae). Mem Inst Oswaldo Cruz. 1998;93(2):195–9.
dc.relationDutari LC, Loaiza JR. American Cutaneous Leishmaniasis in Panama: a historical review of entomological studies on anthropophilic Lutzomyia sand fly species. Parasit Vectors [Internet]. 2014;7(1):218. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4026118&tool=pmcentrez&rendertype=abstract
dc.relationRodriguez-Bonfante C, Bonfante-Garrido R, Grimaldi G, Momen H, Cupolillo E. Genotypically distinct Leishmania colombiensis isolates from Venezuela cause both cutaneous and visceral leishmaniasis in humans. Infect Genet Evol. 2003;3(2):119–24.
dc.relationDujardin J, Bañuls A, Victoir K, De Doncker S, Arevalo J, Llanos-Cuentas, A Tibayrenc M, et al. From population to genome: ecogenetics of Leishmania (Viannia) braziliensis and L. (V.) peruviana. Ann Trop Med Parasitol. 1995;89(1):45–53.
dc.relationDavies CR, Campbell-lendrum D, Reithinger R, Campbell-lendrum D, Feliciangeli D, Borges R, et al. The epidemiology and control of leishmaniasis in Andean countries Epidemiologia e controle da leishmaniose nos países andinos. Cad Saude Pública, Rio Janeiro. 2000;16(4):925–50.
dc.relationKato H, Cáceres AG, Mimori T, Ishimaru Y, Sayed ASM, Fujita M, et al. Use of FTA cards for direct sampling of patients’ lesions in the ecological study of cutaneous leishmaniasis. J Clin Microbiol. 2010;48(10):3661–5.
dc.relationKato H, Uezato H, Katakura K, Calvopiña M, Marco JD, Barroso PA, et al. Detection and identification of Leishmania species within naturally infected sand flies in the andean areas of ecuador by a polymerase chain reaction. Am J Trop Med Hyg. 2005;72(1):87–93.
dc.relationHernandez C, Ramirez JD. Molecular Diagnosis of Vector-Borne Parasitic Diseases. Air Water Borne Dis [Internet]. 2013;2(1):1–10. Available from: http://www.omicsgroup.org/journals/molecular-diagnosis-of-vector-borne-parasiticdiseases-167-7719.1000110.php?aid=16228
dc.relationLocatelli FM, Cajal SP, Barroso PA, Lauthier JJ, Mora MC, Juarez M, et al. The isolation and molecular characterization of Leishmania spp. from patients with American tegumentary leishmaniasis in northwest Argentina. Acta Trop [Internet]. Elsevier B.V.; 2014;131(1):16–21. Available from: http://dx.doi.org/10.1016/j.actatropica.2013.11.015
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsAcceso abierto
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.titleImplementación de técnicas moleculares para diagnóstico y epidemiología de la Enfermedad de Chagas y Leishmaniasis en Colombia


Este ítem pertenece a la siguiente institución