dc.contributorEscobar-Pérez, Javier
dc.contributorMárquez Ortiz, Ricaurte Alejandro
dc.contributorEscobar-Pérez, Javier [0000-0002-0432-6978]
dc.creatorCorredor Rozo, Zayda Lorena
dc.date.accessioned2021-02-16T19:34:16Z
dc.date.accessioned2023-06-05T14:34:26Z
dc.date.available2021-02-16T19:34:16Z
dc.date.available2023-06-05T14:34:26Z
dc.date.created2021-02-16T19:34:16Z
dc.date.issued2021
dc.identifierhttp://hdl.handle.net/20.500.12495/5348
dc.identifierinstname: Universidad El Bosque
dc.identifierreponame: Repositorio Institucional Universidad El Bosque
dc.identifierrepourl: https://repositorio.unbosque.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6639406
dc.description.abstractEn las últimas dos décadas se ha reportado la emergencia y rápida diseminación del Staphylococcus aureus resistente a meticilina clon USA300 con una amplia distribución y patogenicidad, causando al ser humano infecciones no solo en el hospital sino en la comunidad. El elemento genético móvil para el catabolismo de la arginina (ACME) fue identificado exclusivamente en este clon y dentro de este elemento se encuentra un operón arc que tiene la misma función catabólica de ACME suministrando ATP en condiciones anaerobias y que en ambientes ácidos aumenta el pH del medio favoreciendo la capacidad para colonizar. Estudios previos en nuestro laboratorio mostraron que una sobreexpresión del operón arcACME en el clon USA300 es dada posiblemente por el gen sausa300_0063 inserto dentro de este operón que codifica para un regulador transcripcional. Determinar la participación de la proteína hipotética SAUSA300_0063 en la activación del operón arc presente en ACME en el clon pandémico USA300. Mediante el sistema de expresión pET303/CT-His en BL21 (DE3) se produjo la proteína recombinante SAUSA300_0063 del operón arcACME la cual se purificó mediante electroelución. Se determinó la unión in vitro de la proteína recombinante SAUSA300_0063 a la secuencia promotora del operón arcACME mediante ensayos de retardamiento en gel y por PCR en tiempo real se analizó la transcripción relativa de los genes sausa300_0063, arcCACME, arcCcons y arcR en condiciones de anaerobiosis en presencia o ausencia de arginina. La evidencia experimental mostró que la proteína SAUSA300_0063 establece su unión en el promotor del operón arcACME sugiriendo una aproximación acerca de su función como regulador transcripcional perteneciente a la familia de proteínas CRP/FNR. Adicionalmente se observó una relación directa en el aumento de la transcripción de los genes sausa300_0063 y arcC del operón arcACME indicando la posible participación de la proteína SAUSA300_0063 en la autoactivación del operón arcACME, dada a esta nueva estructura del operón facilitando su regulación. La proteína SAUSA300_0063 participa en la activación del operón arcACME a través de la unión a su región promotora y esta activación es mayor que la encontrada en el operón arc constitutivo. Estos resultados sugieren que el cambio estructural encontrado en el operón arcACME facilita la participación de la proteína SAUSA300_0063 en la auto-activación de este operón ya que dada a esta nueva estructura se podría regular en modo cis considerándose un sistema altamente ventajoso.
dc.languagespa
dc.publisherMaestría en Ciencias Básicas Biomédicas
dc.publisherUniversidad El Bosque
dc.publisherFacultad de Medicina
dc.relationBustos Martínez JA, Hamdan Partida A, and G.C. M, Staphylococcus aureus: la reemergencia de un patógeno en la comunidad. Rev Biomed, 2006. 17 p. 287-305.
dc.relationMurray P. Baron E, J.J., Pfaller M, Yolken R., , Manual of clinical microbiology. . 8 ed. Vol. 1. 2003, Washington.
dc.relationDiep, B.A., et al., Complete genome sequence of USA300, an epidemic clone of communityacquired meticillin-resistant Staphylococcus aureus. Lancet, 2006. 367(9512): p. 731-9.
dc.relationThurlow, L.R., et al., Functional modularity of the arginine catabolic mobile element contributes to the success of USA300 methicillin-resistant Staphylococcus aureus. Cell Host Microbe, 2013. 13(1): p. 100-7.
dc.relationAlonzo, F., 3rd and V.J. Torres, A lesson in survival: S. aureus versus the skin. Cell Host Microbe, 2013. 13(1): p. 3-5.
dc.relationMakhlin, J., et al., Staphylococcus aureus ArcR controls expression of the arginine deiminase operon. J Bacteriol, 2007. 189(16): p. 5976-86.
dc.relationZeng, L., Y. Dong, and R.A. Burne, Characterization of cis-acting sites controlling arginine deiminase gene expression in Streptococcus gordonii. J Bacteriol, 2006. 188(3): p. 941-9.
dc.relationZuniga, M., G. Perez, and F. Gonzalez-Candelas, Evolution of arginine deiminase (ADI) pathway genes. Mol Phylogenet Evol, 2002. 25(3): p. 429-44.
dc.relationGriswold, A., et al., Characterization of the arginine deiminase operon of Streptococcus rattus FA-1. Appl Environ Microbiol, 2004. 70(3): p. 1321-7.
dc.relationFulde, M., et al., ArgR is an essential local transcriptional regulator of the arcABC operon in Streptococcus suis and is crucial for biological fitness in an acidic environment. Microbiology, 2011. 157(Pt 2): p. 572-82.
dc.relationTonon, T., J.P. Bourdineaud, and A. Lonvaud-Funel, The arcABC gene cluster encoding the arginine deiminase pathway of Oenococcus oeni, and arginine induction of a CRP-like gene. Res Microbiol, 2001. 152(7): p. 653-61.
dc.relationAkhter, Y., S. Tundup, and S.E. Hasnain, Novel biochemical properties of a CRP/FNR family transcription factor from Mycobacterium tuberculosis. Int J Med Microbiol, 2007. 297(6): p. 451-7.
dc.relationGruening, P., et al., Structure, regulation, and putative function of the arginine deiminase system of Streptococcus suis. J Bacteriol, 2006. 188(2): p. 361-9.
dc.relationPortillo, B.C., Determinación de la Presencia y Transcripción de Factores de Virulencia en Aislamientos Colombianos de Staphylococcus Aureus Resistente a Meticilina Adquirido en la Comunidad 2009, Universidad el Bosque: Bogotá.
dc.relationIbarra, J.A., et al., Global analysis of transcriptional regulators in Staphylococcus aureus. BMC Genomics, 2013. 14: p. 126.
dc.relationMiller, L.G. and B.A. Diep, Clinical practice: colonization, fomites, and virulence: rethinking the pathogenesis of community-associated methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis, 2008. 46(5): p. 752-60.
dc.relationWijaya, L., L.Y. Hsu, and A. Kurup, Community-associated methicillin-resistant Staphylococcus aureus: overview and local situation. Ann Acad Med Singapore, 2006. 35(7): p. 479-86.
dc.relationGordon, R.J. and F.D. Lowy, Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis, 2008. 46 Suppl 5: p. S350-9.
dc.relationGordon R J., F.D.L., Pathogenesis of Methicillin-Resistant Staphylococcus aureus Infection. CID, 2008. 46(Suppl 5): p. 350-359.
dc.relationAires de Sousa, M. and H. Lencastre, Bridges from hospitals to the laboratory: genetic portraits of methicillin-resistant Staphylococcus aureus clones. FEMS Immunology and Medical Microbiology, 2004. 40: p. 101-111.
dc.relationCreech, C.B., 2nd, T.R. Talbot, and W. Schaffner, Community-associated methicillinresistant Staphylococcus aureus: the way to the wound is through the nose. J Infect Dis, 2006. 193(2): p. 169-71.
dc.relationRubin, R.J., et al., The economic impact of Staphylococcus aureus infection in New York City hospitals. Emerg Infect Dis, 1999. 5(1): p. 9-17.
dc.relationEngemann, J.J., et al., Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection. Clin Infect Dis, 2003. 36(5): p. 592-8.
dc.relationRuiz, V.A. and S.M. Guillén, Tratado SEIMC de enfermedades infecciosas y microbiología clínica. 2006: Editorial Médica Panamericana.
dc.relationMediavilla, J.R., et al., Global epidemiology of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA). Curr Opin Microbiol, 2012. 15(5): p. 588-95.
dc.relationKobayashi, S.D., et al., Comparative analysis of USA300 virulence determinants in a rabbit model of skin and soft tissue infection. J Infect Dis, 2011. 204(6): p. 937-41.
dc.relationDegnan, B.A., et al., Characterization of an isogenic mutant of Streptococcus pyogenes Manfredo lacking the ability to make streptococcal acid glycoprotein. Infect Immun, 2000. 68(5): p. 2441-8.
dc.relationPannaraj, P.S., et al., Infective pyomyositis and myositis in children in the era of community-acquired, methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis, 2006. 43(8): p. 953-60.
dc.relationLowy, F.D., Staphylococcus aureus infections. N Engl J Med, 1998. 339(8): p. 520-32.
dc.relationMasalha, M., et al., Analysis of transcription of the Staphylococcus aureus aerobic class Ib and anaerobic class III ribonucleotide reductase genes in response to oxygen. J Bacteriol, 2001. 183(24): p. 7260-72.
dc.relationOmoe, K., et al., Biological properties of staphylococcal enterotoxin-like toxin type R. Infect Immun, 2004. 72(6): p. 3664-7.
dc.relationYamaguchi, T., et al., Identification of the Staphylococcus aureus etd pathogenicity island which encodes a novel exfoliative toxin, ETD, and EDIN-B. Infect Immun, 2002. 70(10): p. 5835-45.
dc.relationOtter, J.A. and G.L. French, Community-associated meticillin-resistant Staphylococcus aureus: the case for a genotypic definition. J Hosp Infect, 2012. 81(3): p. 143-8.
dc.relationYamamoto T, H.W., Takano T, Nishiyama A., Genetic nature and virulence of communityassociated methicillin-resistant Staphylococcus aureus BioMedicine 2013. 3(1): p. 2-18.
dc.relationMediavilla, J.R., et al., Global epidemiology of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA). Curr Opin Microbiol. 15(5): p. 588-95.
dc.relationDeleo, F.R., et al., Community-associated meticillin-resistant Staphylococcus aureus. Lancet. 375(9725): p. 1557-68.
dc.relationChambers, H.F., The changing epidemiology of Staphylococcus aureus? Emerg Infect Dis, 2001. 7(2): p. 178-82.
dc.relationFey, P.D., et al., Comparative molecular analysis of community- or hospital-acquired methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother, 2003. 47(1): p. 196- 03.
dc.relationBerga, A.P., Infecciones producidas por Staphylococcus aureus. 2009: Marge Books.
dc.relationSeybold, U., et al., Emergence of community-associated methicillin-resistant Staphylococcus aureus USA300 genotype as a major cause of health care-associated blood stream infections. Clin Infect Dis, 2006. 42(5): p. 647-56.
dc.relationYamamoto, T., et al., Community-acquired methicillin-resistant Staphylococcus aureus: community transmission, pathogenesis, and drug resistance. J Infect Chemother, 2010. 16(4): p. 225-54.
dc.relationKurlenda, J. and M. Grinholc, Alternative therapies in Staphylococcus aureus diseases. Acta Biochim Pol, 2012. 59(2): p. 171-84.
dc.relationde Lencastre, H., D. Oliveira, and A. Tomasz, Antibiotic resistant Staphylococcus aureus: a paradigm of adaptive power. Curr Opin Microbiol, 2007. 10(5): p. 428-35.
dc.relationVoyich, J.M., et al., Is Panton-Valentine leukocidin the major virulence determinant in community-associated methicillin-resistant Staphylococcus aureus disease? J Infect Dis, 2006. 194(12): p. 1761-70.
dc.relationShukla, S.K., Community-associated methicillin-resistant Staphylococcus aureus and its emerging virulence. Clin Med Res, 2005. 3(2): p. 57-60.
dc.relationTenover, F.C. and R.V. Goering, Methicillin-resistant Staphylococcus aureus strain USA300: origin and epidemiology. J Antimicrob Chemother, 2009. 64(3): p. 441-6.
dc.relationMa, X.X., et al., Community-acquired methicillin-resistant Staphylococcus aureus, Uruguay. Emerg Infect Dis, 2005. 11(6): p. 973-6.
dc.relationRodriguez-Noriega, E., et al., Evolution of methicillin-resistant Staphylococcus aureus clones in Latin America. Int J Infect Dis. 14(7): p. e560-6.
dc.relationOtto, M., Community-associated MRSA: what makes them special? Int J Med Microbiol, 2013. 303(6-7): p. 324-30.
dc.relationMiragaia, M., et al., Genetic diversity of arginine catabolic mobile element in Staphylococcus epidermidis. PLoS One, 2009. 4(11): p. e7722.
dc.relationMalachowa, N. and F.R. DeLeo, Mobile genetic elements of Staphylococcus aureus. Cell Mol Life Sci, 2010. 67(18): p. 3057-71.
dc.relationVoyich, J.M., et al., Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. J Immunol, 2005. 175(6): p. 3907-19.
dc.relationWu, K., et al., Assessment of virulence diversity of methicillin-resistant Staphylococcus aureus strains with a Drosophila melanogaster infection model. BMC Microbiol, 2012. 12: p. 274.
dc.relationParker, D. and A. Prince, Immunopathogenesis of Staphylococcus aureus pulmonary infection. Semin Immunopathol, 2012. 34(2): p. 281-97.
dc.relationSifri, C.D., et al., Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infect Immun, 2003. 71(4): p. 2208-17.
dc.relationBarbier, F., et al., High prevalence of the arginine catabolic mobile element in carriage isolates of methicillin-resistant Staphylococcus epidermidis. J Antimicrob Chemother, 2011. 66(1): p. 29-36.
dc.relationOnishi, M., et al., Prevalence and genetic diversity of arginine catabolic mobile element (ACME) in clinical isolates of coagulase-negative staphylococci: Identification of ACME type I variants in Staphylococcus epidermidis. Infect Genet Evol, 2013.
dc.relationShore, A.C., et al., Characterization of a novel arginine catabolic mobile element (ACME) and staphylococcal chromosomal cassette mec composite island with significant homology to Staphylococcus epidermidis ACME type II in methicillin-resistant Staphylococcus aureus genotype ST22-MRSA-IV. Antimicrob Agents Chemother, 2011. 55(5): p. 1896-905.
dc.relationSabat, A.J., et al., Novel organization of the arginine catabolic mobile element and staphylococcal cassette chromosome mec composite island and its horizontal transfer between distinct Staphylococcus aureus genotypes. Antimicrob Agents Chemother, 2013. 57(11): p. 5774-7.
dc.relationAraque Granados, M.I., Estudio bioquímico y molecular de la producción de precursores de carbamato de etilo por bacteria lácticas asociadas al proceso de vinificación, in Bioquímica y Biotecnologia. 2010, Universitat Rovira i Virgili.: Tarragona. p. 261.
dc.relationDiep, B.A., et al., The arginine catabolic mobile element and staphylococcal chromosomal cassette mec linkage: convergence of virulence and resistance in the USA300 clone of methicillin-resistant Staphylococcus aureus. J Infect Dis, 2008. 197(11): p. 1523-30.
dc.relationIto, T., Y. Katayama, and K. Hiramatsu, Cloning and nucleotide sequence determination of the entire mec DNA of pre-methicillin-resistant Staphylococcus aureus N315. Antimicrob Agents Chemother, 1999. 43(6): p. 1449-58.
dc.relationPreston, G.M., B. Haubold, and P.B. Rainey, Bacterial genomics and adaptation to life on plants: implications for the evolution of pathogenicity and symbiosis. Curr Opin Microbiol, 1998. 1(5): p. 589-97.
dc.relationFuchs, S., et al., Anaerobic gene expression in Staphylococcus aureus. J Bacteriol, 2007. 189(11): p. 4275-89.
dc.relationMathews, C.K., et al., Bioquímica. 2002: Pearson Educación.
dc.relationMatsui, M., M. Tomita, and A. Kanai, Comprehensive computational analysis of bacterial CRP/FNR superfamily and its target motifs reveals stepwise evolution of transcriptional networks. Genome Biol Evol, 2013. 5(2): p. 267-82.
dc.relationMakarova, K.S., A.A. Mironov, and M.S. Gelfand, Conservation of the binding site for the arginine repressor in all bacterial lineages. Genome Biol, 2001. 2(4): p. RESEARCH0013.
dc.relationCaldara, M., D. Charlier, and R. Cunin, The arginine regulon of Escherichia coli: wholesystem transcriptome analysis discovers new genes and provides an integrated view of arginine regulation. Microbiology, 2006. 152(Pt 11): p. 3343-54.
dc.relationLevy, C., et al., Molecular basis of halorespiration control by CprK, a CRP-FNR type transcriptional regulator. Mol Microbiol, 2008. 70(1): p. 151-67.
dc.relationSawers, G., et al., Transcriptional activation by FNR and CRP: reciprocity of binding-site recognition. Mol Microbiol, 1997. 23(4): p. 835-45.
dc.relationHolmes, D.S. and M. Quigley, A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem, 1981. 114(1): p. 193-7.
dc.relationSambrook, J. and D.W. Russell, Molecular Cloning: A Laboratory Manual. 2001: Cold Spring Harbor Laboratory Press.
dc.relationStrålfors, P. and P. Belfrage, Electrophoretic elution of proteins from polyacrylamide gel slices. Analytical Biochemistry, 1983. 128(1): p. 7-10.
dc.relationVoyich JM, O.M., Mathema B, Braughton KR, Whitney AR, Welty D, , et al., Is PantonValentine leucocidin the major virulence determinant in community-associated methicillinresistant Staphylococcus aureus disease? J Infect Dis, 2006. 194(12): p. 1761-70.
dc.relationSchefe, J.H., et al., Quantitative real-time RT-PCR data analysis: current concepts and the novel "gene expression's CT difference" formula. J Mol Med (Berl), 2006. 84(11): p. 90110.
dc.relationCunin, R., et al., Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev, 1986. 50(3): p. 314-52.
dc.relationOuzounis, C.A. and N.C. Kyrpides, On the evolution of arginases and related enzymes. J Mol Evol, 1994. 39(1): p. 101-4.
dc.relationLindgren, J.K., et al., Arginine deiminase in Staphylococcus epidermidis functions to augment biofilm maturation through pH homeostasis. J Bacteriol, 2014. 196(12): p. 227789.
dc.relationHazkani-Covo, E. and D. Graur, Evolutionary conservation of bacterial operons: does transcriptional connectivity matter? Genetica, 2005. 124(2-3): p. 145-66.
dc.relationPlanet, P.J., et al., Emergence of the epidemic methicillin-resistant Staphylococcus aureus strain USA300 coincides with horizontal transfer of the arginine catabolic mobile element and speG-mediated adaptations for survival on skin. MBio, 2013. 4(6): p. e00889-13.
dc.relationLathe, W.C., III, B. Snel, and P. Bork, Gene context conservation of a higher order than operons. Trends in Biochemical Sciences. 25(10): p. 474-479.
dc.relationPrice, M.N., et al., Operon Formation is Driven by Co-Regulation and Not by Horizontal Gene Transfer. 2005.
dc.relationWang, L., et al., Genome-wide operon prediction in Staphylococcus aureus. Nucleic Acids Res, 2004. 32(12): p. 3689-702.
dc.relationCotter, P.D. and C. Hill, Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev, 2003. 67(3): p. 429-53, table of contents.
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsAcceso abierto
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rights2015-08
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.subjectClon USA300
dc.subjectACME
dc.subjectOperón arc
dc.subjectProteína hipotética SAUSA300_0063
dc.subjectActivador transcripcional
dc.titleDeterminación in vitro de la participación de la proteína hipotética SAUSA300_0063 en la activación del operón arc presente en el elemento móvil para el catabolismo de la arginina (ACME) en el clon pandémico USA300


Este ítem pertenece a la siguiente institución