masterThesis
Evaluación de la producción de celulosa por Acetobacter xylinum ifo en presencia de melaza de caña bajo condiciones estáticas y/o de flujo de aire intermitente
Fecha
2013-09-24Registro en:
Krystynowicz, A. & Bielecki, S. Biosynthesis of bacterial cellulose andits potential
application in the different industries. PolishBiotechnology News consultado en.
www.biotechnology-pl.com/science/krystynowicz.html
Williams, S. & Cannon, R. (1989). Alternative environmental roles for celluloseproduced
by Acetobacter xylinum. Appl. Environ. Microbiol. 55,2448-2452
Hans, N. & Robyt, J. (1998).The mechanism of Acetobacter xylinum
cellulosebiosynthesis: direction of chain elongation and the role of lipidpyrophosphate
intermediates in the cell membrane. Carbohydr.Res. 313, 125-133
Verschuren P.G., Cardona T.D., Robert Nout MJ., De Gooijer K.D and Van den Heuvel
J.e. (2000).Location and limitation of cellulose production by Ace/obauer :()'/in!l111
established from oxygen profiles. J. Biosci. Bioeng. 89(5): 414419.
Brown, A.J. (1886). XLIII.-On an acetic ferment which forms cellulose. Rev.Journal of the Chemical Society, Transactions, Vol.49, 432-439.
Hestrin, S. and Schramm, M. (1954). Synthesis of cellulose by Acetobacter xylinum:
preparation of freeze dried cells capable of polymerizing glucose to cellulose, Biochem. J.,
58, 345
Dudman, W. (1959). Cellulose production by Acetobacter Acetigenum in defined
medium. J. gen. Rev. Microbiol. Vol. 21, 327.
Embuscado, M., Marks, J., Bemiller, J. 1994. Bacterial Cellulose. Rev. Food
Hydrocolloid, Vol. 8, 407-418.
Oikawa, T., Ohtori, T. y Ameyama, M. (1995) Production of cellulose from D.mannitol by
Acetobacter xylinum KU-1. Bioscience, Biotechnology, Biochemistry. vol. 59(2), pág. 331
332.
Budhiono, A., Rosidi, B., Taher, H., & Iguchi, M..(1999). Kinetic aspect of bacterial
cellulose formation in nata-decoco culture system. Carbohydrate Polymers, 40,137–143.
Ramana KV, Tomar A, Singh L.( 2000).Effect of various carbon and nitrogen sources
on cellulose synthesis by Acetobacter xylinum. J Microbiol Biotechnol; 16:245-248.
Ishihara, M., Matsunaga, M., y col.(2002). Utilization of D- xylose as carbon source for
production of bacterial cellulose. Enzyme and Microbial Technology. vol. 31, pág. 986-991.
Bae, S. y Shoda, M . (2004) .Bacterial cellulose production by fed-batch fermentation
in molasses medium. Biotechnol Prog. Vol 20(5), pág1366-71.
Bae, S. y Shoda, M.( 2005). Production of bacterial cellulose by Acetobacter xylinum
BPR2001 using molasses medium in a jar fermentor. Applied Microbial Biotechnology vol.
67, pág. 45-51
S. Keshk, K. Sameshima, (2006). Influence of lignosulfonate on crystal structure and
productivity of bacterial cellulose in a static culture, Enzyme Microb. Technol. 40 4–8. A19
Premjet, S. Premjet, D. y ,Ohtani, Y. (2007). The Effect of Ingredients of Sugar Cane
Molasses on Bacterial Cellulose Production by Acetobacter xylinum ATCC 10245. Sen'i
Gakkaishi, 63.193-199.
Surma, B., Presler, S., Danielewicz., D. (2008). Characteristics of bacterial cellulose
obtained from Acetobacter xylinum culture for application in papermaking. Rev. Fibres
Text. Eastern Eur. Vol. 16: 108-111.
Kurosumi, A., Sasaki, C., y col.( 2009). Utilization of various fruit juices as carbon
source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydrate Polymers. vol. 76, pág. 333-335
Mikkelsen, D., Flanagan, B., Dykes, G. and Gidley, M.( 2009). Influence of different
carbon sources on bacterial cellulose production y Gluconacetobacter xylinus strain ATCC
53524. Journal of Applied Microbiology, 107: 576–583. doi: 10.1111/j.13652672.2009.04226.
Zeng, X., Small, D.P., Wan, W. (2011). Statistical optimization of culture conditions for
bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup.
Carbohydrate Polymers. 85:506-513.
Jyh-Ming Wu, Ren-Han Liu (2012). Cost-effective production of bacterial cellulose in
static cultures using distillery wastewater. Journal of Bioscience and Bioengineering,
Available online 23 October 2012.
Campbell, P.N. Smith, A.D. y Peters, T.J.,. Bioquímica Ilustrada . Quinta Edición.
Barcelona: Masson. (2006)
Czaja W., Krystynowicz A., Bielecki S. and Brown J., R. Malcolm. (2006). "Microbial
cellulose--the natural power to heal wounds". Biomaterials, Vol. 27, No. 2, pp. 145-151.
Akerholm, M., Hinterstoisser, B. y Salmén, L. (2004). Characterization of the
crystalline structure of cellulose using static and dynamic FT-IR spectroscopy.
Carbohydrate Research. vol. 339,pág. 569-578.
Watanabe K., Tabuchi M., Morinaga Y. and Yoshinaga F. (1998) "Structural features
and properties of bacterial cellulose produced in agitated culture". Cellulose, Vol. 5, No.
3, pp. 187-200
Jung HI, Jeong JH, Lee OM, Park GT, Kim KK, Park HC, Lee SM, Kim YG, Son HJ
(2010). Influence of glycerol on production and structural–physical properties of cellulose
from Acetobacter sp. V6 cultured in shake flasks. Bioresour. Technol. 101: 3602-3608.
Romling U.( 2002). Molecular biology of cellulose production in bacteria.Research in
Microbiology 153: 205–212.
Saxena, I. M., and R. M. Brown, Jr. (2007). A perspective on the assembly of
cellulose-synthesizing complexes: possible role of KORRIGAN and microtubules in
cellulose synthesis in plants. In: Brown, Jr., R. M. and Saxena, I. M. (eds) Cellulose:
Molecular and Structural Biology, pp 169-181
Zhou LL, Sun DP, Hu LY et al (2007) Effect of addition of sodium alginate on bacterial
cellulose production by Acetobacter xylinum. J Ind Microbiol Biotechnol 34(7):483–489
Delmer DP (1999). Cellulose biosynthesis: exciting times for a difficult field of study.
Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 245-27613.Brown, Jr. R. M. (1994).
Understanding nature's preference for cellulose I assembly: Toward a new biotechnology
era for cellulose. Proc. Inter.Symp. Fiber Sci. and Tech. p437-239. Publishers. The Society
of Fiber Science and Technology, Japan.
De Faveri D, Torre, P., Molinari F., Perego P., Converti A., (2003) ´Carbon material
balances and bioenergetics of 2,3-butanediol bio-oxidation by Acetobacter hanseniiµ
Enzyme and Microbial Technology 33 708-719
Hwang JW, Yang YK, Hwang JK et al (1999) Effects of pH and dissolved oxygen on
cellulose production by Acetobacter xylinum BRC5 in agitated culture. J Biosci Bioeng
88(2):183–188
Méndez Ortiz, Micaela Marcela; Membrillo Hernández, Jorge. (2004). Mecanismos
moleculares de la síntesis de celulosa en bacterias Tip Revista Especializada en Ciencias
Químico-Biológicas, vol. 7, núm. 001, , pp. 26-34 Universidad Nacional Autónoma de
México
Matsuoka, M., Tsuchida, T., y col.( 1996). A Synthetic Medium for Bacterial Cellulose
Production by Acetobacter xylinum subsp. Sucrofermentans. Bioscience, Biotechnology,
Biochemistry vol. 60, pág. 575-579.
Pourramezan, G.Z., A.M. Roayaei and Q.R. Qezelbash.( 2009). Optimization of culture
conditions for bacterial cellulose production by Acetobacter sp. 4B-2 Biotechnology, 8:
150-154
Bielecki, S., Krystynowicz, A., y col.(2002). Bacterial Cellulose. Biopolymers. vol. 5(3),
pág. 40-85.
Jung, H., Jeong, J., y col.( 2010). Influence of glycerol on production and structuralphysical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks.
Bioresource Technology. vol. 101(10), pág. 3602-3608.
Ariza, B. y Gonzalez, L.( 1997). Producción de Proteína Unicelular a partir de
levaduras y melaza de caña de azúcar como sustrato. Tesis de pregrado Bacteriología.
Pontificia Universidad Javeriana. Facultad de Ciencias.Departamento de Bacteriología.
Bogotá. Colombia. 22-27p
Chao, Y., Miratai, M., y col.( 2001). Effect of addition of water-soluble polysaccharides
on bacterial cellulose production in a 50- L Airlift Reactor. Biotechnology Progress. vol. 17
pág. 781-785
Villareal J.L .( 2002).Efecto de la Pulpa madura de la ahuyama(Cucurbita maxima
duchesne) y de la cascara del banano comun (Musa sapientum L.) sobre la producción de
celulosa por Acetobacter xylinum IFO. Tesis de pregrado Microbiología. Universidad Libre.
Sede Barranquilla
Czaja, W., Romanovicz, D. y Brown, R.( 2004). Structural investigations of microbial
cellulose produced in stationary and agitated culture. Cellulose. vol. 11, pág. 403-411.
Castro, M.( 1993). Estudio de la melaza de caña como sustrato de la fermentación
Acetobutílica. Tesis Pregrado Ingeniería Química. Universidad Nacional de Colombia.
Facultad de Ingeniería. Bogotá, Colombia. 3-35p.
Tellez, D. (2004.)Caracterización de las melazas empleadas en el proceso
fermentativo de la destilería San Martín- Industria de Licores del Valle. Universidad del
Valle. Tesis pregrado Bacteriología. Facultad de salud. Escuela de Bacteriología y
Laboratorio clínico. Santiago de Cali. Cali, Colombia. 79p.
Czaja, N.; Krystynowics, A.; Kaweki, M.; Wysota, K.; Sakiez, S.; Wrobewsky, P.; Glik,
J.; Nowak, M.y Bielicki, S.(2007). Biomedical applications of Microbial Cellulose in Burn
Wound Recovery en Cellulose Molecular and Structural Biology (Brow, R. M. y Saxena, I.
M.).
Klemm, D.; Schumann, D.; Udhardt, U.; Marsch, S. (2001). Bacterial synthesized
cellulose – artificial blood vessels for microsurgery. Prog. Polym. Sci. 26: 1561–1603
Bolívar A. H.J., Orozco S. C.J. (2006.) Efecto de diferentes concentraciones de
extracto de pulpa de tomate sobre la producción de celulosa por Acetobacter xylinum.
Tesis de Pre-Grado. Barranquilla, Colombia. Universidad Libre Barranquilla, Colombia.
Facultad Ciencias de la Salud. Programa Microbiología Industrial.
Carreño, L. (2011). Efecto de las condiciones de cultivo y purificación sobre las
propiedades fisicoquímicas y de transporte en membranas de celulosa bacteriana. Tesis
de Doctorado. Universidad Nacional de Colombia. Bogotá-Colombia.
Caicedo, L., De Franca, F. Y Lopez, L. (2001). Factores para el escalado del proceso
de producción de celulosa por fermentación estática. Revista Colombiana de Química. vol.
30(2), pág. 155-162.
Chawla, P., Bajaj, I., y col.(2009). Microbial Cellulose: Fermentative Production and
Applications.Food Technology and Biotechnology. vol. 47(2), pág. 107-124.
Watanabe, K. y Yamanaka, S.(1995). Effects of Oxygen Tension in the Gaseous
Phase on Production and Physical Properties of Bacterial Cellulose Formed Under Static
Culture Conditions. Bioscience, Biotechnology and Biochemistry. vol. 59(1), pág. 65-68.
Hwang, Jung Wook, et al. (1999). Efects of pH and disolved oxygen on cellulose
production by acetobacter xylinum BRC5 in agitated cultura. J. Biosci. Bioeng. 88, 183-
188
Astley, O., Chanliaud, E., Y Col. (2003). Tensile deformation of bacterial cellulose
composites. International Journal of Biological Macromolecules. vol. 32, pág. 28–35.
Caicedo, L., De Franca, F., Y Col. (2003). Permeabilidad hidráulica e hinchamiento en
membranas de celulosa bacteriana. Memorias, III Congreso Internacional de
Biomateriales BIOMAT
Chavez, J., Martinez, S., Contreras, M., Escamilla, E.(2004). Celulosa bacteriana en
Gluconacetobacter xilynum: Biosintesis y aplicaciones. Rev. Especializada en ciencias
Quimico-Biologicas. Vol. 7, 18-25
Yang, Y., Park, S., Y Col. (1998). Cellulose Production by Acetobacter xylinum BRC5
under Agitated Condition. Journal of Fermentation and Bioengineering. Vol. 85(3), pág.
312-317.
Yamada, Y., Hoshino, K. and Ishikawa, T.( 1997). The phylogeny of acetic acid
bacteria based on the partial sequences of 16S ribosomal RNA: The elevation of
subgenus Gluconoacetobacter to the generic level. Biosci. Biotechnol. Biochem., 61,
1244-125
Jonas R, Farah LF. (1998). Production and application of microbial. cellulose. Poly.
Deg. Stab. 59: 101-106.
Ross P, Mayer R, Benziman M.( 1991). Cellulose biosynthesis and fuction in bacteria.
Microbiol. Rev. 55: 35-58.
Méndez Ortiz, Micaela Marcela; Membrillo Hernández, Jorge. (2004). Mecanismos
moleculares de la síntesis de celulosa en bacterias Tip Revista Especializada en Ciencias
Químico-Biológicas, vol. 7, núm. 001, pp. 26-34 Universidad Nacional Autónoma de
México. México.
Delmer DP.( 1999). Cellulose biosynthesis: exciting times for a difficult field of study.
Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 245-276.
Legnani, C., Vilani, C., y col. (2008.). Bacterial cellulose membrane as flexible
substrate for organic light emitting devices. Thin Solid Films. vol. 517(3), pág. 1016-1020
Gómez-Manzo S, Arreguín-Espinosa R, Contreras-Zentella M, Escamilla-Marván E.(
2005). Las quinoproteínas alcohol deshidrogenasas en los sistemas bacterianos:
distribución, clasificación, estructura y función TIP Rev Esp Cienc Quim Biol.
Matsushita, K.; Takakai, Y.; Shinagawa, E.; Ameyama, M. y Adachi, O.( 1992).
´Ethanol oxidase respiratory chain of Acetic Acid Bacteriaµ Biosci. Biotech. Biochem. 56:
304 -310.
Benziman, M. y Palgi, A. (1970)´Characterization and properties of the Pyruvate
Phosphorilation system of Acetobacter xylinumµ Journal of Bacteriology. 104 (1): 211-
218..
Matsushita, K., Fujii, Y., Ano, Y., Toyama, H., Shinjoh, M., Tomiyama, N., Miyazaki, T.,
Sugisawa, T., Hoshino, T. & Adachi, O. (2003), 5-Keto-D-gluconate production is
catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in
Gluconobacter species. Appl Environ Microbiol
Wolfe, A. J.( 2005). ´The Acetate Switchµ Microbiology and Molecular Biology Reviews.
69 (1): 12-50.
Chávez-Pacheco, J. L.; Martínez-Yee, S.; Contreras, M. L.; Gómez-Manzo, S.;
Membrillo-Hernández, J., Escamilla, J. E (2005).´Partial bioenergetic characterization of
Gluconoacetobacter xylinum cells released from cellulose pellicles by a novel
methodologyµ Journal of Applied Microbiology. 99: 1130-1140 51.
Bailey, J., Ollis, D. T. (1997). ´Biochemical Engineering Fundamentals Mc Graw-Hill
Blanch, H. W.; Clark, D. “Biochemical Engineering Marcel Dekker"
Yadav V, Paniliatis BJ, Shi H, Lee K, Cebe P, Kaplan DL.( 2010). Appl Environ
Microbiol. Novel in vivo-degradable cellulose-chitin copolymer from metabolically
engineered Gluconacetobacter xylinus 76(18):6257-65.
Marzieh Moosavi-Nasab, Ali R. Yousef. (2010). Investigation of Physicochemical
Properties of the Bacterial Cellulose Produced by Gluconacetobacter xylinus from Date
Syrup. World Academy of Science, Engineering and Technology vol 68 .
Serafica, G., Mormino, R. Y Bungay, H.( 2002). Inclusion of solid particles in bacterial
cellulose. Applied microbiol biotechnology vol. 58, pág. 756-760.
Taylor, K.A.C.C.( 1995). Colorimetric Fructose Assay. Appl. Biochem.
Biotechnol. 53 (3): 215-227.
K, Hamilton P. (1956). Division of biochemistry, University of Minnesota, St Paul.
Cheng Hp, Wang Pm, Chen Jw, Wu Wt. (2002). Cultivation Of Acetobacter
Xylinum For Bacterial Cellulose Production In A Modified Airlift Reactor. Biotechnol.
Appl. Biochem. 35:125-132.
Orozco, I., Martinez, S.( 2002). Diseño de un medio de cultivo a bajo costo para el
rendimiento de celulosa producida por Acetobacter xylinum IFo. Universidad Libre de
Barranquilla. Tesis de pregrado del programa de Microbiología Industrial.
Krystynowicz A, Czaja W, Wiktorowska-J A, Gonçalves-MM, Turkiewicz M, Bielecki S.
(2002). Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol
Biotechnol (9:189-195).
El-Saied, H., El-Diwany, I., Basta, H., Atwa, a., & El-ghwas, D. (2008). Produc-tion and
characterization of economical bacterial cellulose. BioResources, 3(4), 1196– 1217.
Hesse-Ertelt S., Heinze, T; Togawa, E. (2010).Structure elucidation of uniformly C-13-
labeled bacterial celluloses from different Gluconacetobacter xylinus strains ., Journal
Article Cellulose.
Shead, O.; Khan, S.; Khan, T.; Park, J. K.( 2009). P roduction of bacterial
cellulose in static conditions by a simple fed-batch cultivation strategy. Korean Journal
of Chemical Engineering. 26: 1689–1692
Verschuren P., Cardona T., and Van den Heuve J.( 2000). Location and Limitation
of Cellulose Production by Acetobacter xylinum Established from Oxygen Profiles.
Journal of bioscience and bioengineering Vol. 89, No. 5, 414-419.
Phunsri A, Tammarate P, Krusong W, Tantratian S.( 2003). The liquid/air interface area
and depth of liquid medium suitable for cellulose production from Acetobacter TISTR 975.
J Sci Res Chula Univ; 28(1):35-43.
Shead, O.; Khan, S.; Khan, T.; Park, J. K.(2009). P roduction of bacterial
cellulose in static conditions by a simple fed-batch cultivation strategy. Korean Journal
of Chemical Engineering. 26: 1689–1692.
Weia, B.; Yanga, B.G.; Hong,F. ( 2011).Preparation and evaluation of a kind of
bacterial cellulose dry films with antibacterial properties. Carbohydrate Polymers.
84:533–538.
Retegi A., Gabilondo N., Peña C., Zuluaga R.,Castro C., . Gañamon P., De la Caba
K., Mondragon I.(2010). Bacterial cellulose films with controlled microstructure–
mechanical property relationships. Springer Science+Business Media .
Cheng Hp, Wang Pm, Chen Jw, Wu Wt.( 2002). Cultivation Of Acetobacter
Xylinum For Bacterial Cellulose Production In A Modified Airlift Reactor. Biotechnol.
Appl. Biochem. 35:125-132.
Missen RW, Mims CA, Saville BA.( 1999). Introduction to Chemical Reaction
Engineering and Kinetics. New York: John Wiley & Sons, Inc
Newman, R. H. (1998). Evidence for assignment of 13C NMR signals to cellulose
crystallite surfaces in wood, pulp, and isolated celluloses. Holzforschung, 52, 157–159
Noro, N.; Sungano, Y.; Shoja, M. 2004. Utilization of the buffering capacity of corn
steep liquor in bacterial cellulose production by Acetobacter xylinum. Appl. Microbiol.
Biotechnol. 64: 199-205.
255579
TE05993
Autor
Díaz Barrera, Luis Eduardo
Jaramillo Lanchero, Rubén Darío
Institución
Resumen
La producción de Celulosa Bacteriana en un cultivo con melaza (Max MZA) y aireación intermitente representa un importante avance para la comunidad científica. El cultivo se llevó a cabo a un pH 5,6 y a 30ºC. La incubación se realizó durante 1.5, 3, 7, 14, 21 y 28 días. Se determinaron la producción de celulosa, grosor, comprensibilidad, ufc/mL y concentración de glucosa, fructosa, y sacarosa en los medios de cultivo a diferentes tiempos. La producción de celulosa hasta los 28 días en el medio Max MZA con aireación se incrementó en un rango del 20% en relación a las obtenidas en Estático; asimismo el consumo de sustrato incidió directamente en la producción de celulosa durante el tiempo de cultivo.