masterThesis
Análisis del tiempo de respuesta en la distribución de alimentos en la etapa mediata del desastre para la zona norte establecida por la cruz roja colombiana.
Fecha
2012Registro en:
Altay, N., & Green III, W. G. (2006). OR/MS research in disaster operations management. European Journal of Operational Research, 175 (1), 475-493.
Apte, A. (2009). Humanitarian logistics: A new field of research and action. Foundations and Trends in Technology, Information and Operations Management. 3 (1) , pp. 1-100
Balcik, B., Beamon, B.M.(2008). Facility location in humanitarian relief. International Journal of Logistics Research and Applications. 11 (2) , pp. 101-121
Dctdctquq銀nw."I0. Arda, Y. (2004). A two-stage stochastic programming framework for transportation planning in disaster response. Journal of the Operational Research Society, 55 (1), pp. 43-53
Barbarosolu, G., Özdamar, L., Çevik, A. (2002). An interactive approach for hierarchical analysis of helicopter logistics in disaster relief operations. European Journal of Operational Research, 140 (1), pp. 118-133.
Beamon, B.M., Balcik, B. (2008). Performance measurement in humanitarian relief chains. International Journal of Public Sector Management, 21 (1), pp. 4-25.
Bellabdaoui, a., & Teghem, J. (2006). A mixed-integer linear programming model for the continuous casting planning. International Journal of Production Economics, 104(2), 260-270. doi:10.1016/j.ijpe.2004.10.016
Berman, O., Krass, D. (2002). The generalized maximal covering location problem. Computers and Operations Research, 29 (6), pp. 563-581.
Berman, O., Krass, D., Drezner, Z.(2003). The gradual covering decay location problem on a network. European Journal of Operational Research, 151 (3), pp. 474-480.
Bilgen, B., & Ozkarahan, I. (2007). A mixed-integer linear programming model for bulk grain blending and shipping. International Journal of Production Economics, 107(2), 555-571. doi:10.1016/j.ijpe.2006.11.008
Chang, M.-S., Tseng, Y.-L., & Chen, J.-W. (2007). A scenario planning approach for the flood emergency logistics preparation problem under uncertainty. Transportation Research Part E: Logistics and Transportation Review, 43(6), 737754. doi:10.1016/j.tre.2006.10.013
Chern, C. C., Chen, Y. L., & Kung, L. C. (2010). A heuristic relief transportation planning algorithm for emergency supply chain management. International Journal of Computer Mathematics, 87(7), 1638-1664. doi:10.1080/00207160802441256
De Angelis, V., Mecoli, M., Nikoi, C., Storchi, G. (2007). Multiperiod integrated routing and scheduling of World Food Programme cargo planes in Angola. Computers and Operations Research. 34 (6 SPEC. ISS.), pp. 1601-1615
Doerner, K.F., Gutjahr, W.J., Nolz, P.C.(2009). Multi-criteria location planning for public facilities in tsunami-prone coastal areas. OR Spectrum, 31 (3), pp. 651678.
Döyen, A., Aras, N., Bardctquq銀nw."I0"*4234+0"A two-echelon stochastic facility location model for humanitarian relief logistics. Optimization Letters 6 (6) , pp. 1123-1145.
Drezner, Z., Wesolowsky, G.O., Drezner, T.(2004). The gradual covering problem. Naval Research Logistics, 51 (6), pp. 841-855.
Hu, Z.-H. (2011). A container multimodal transportation scheduling approach based on immune affinity model for emergency relief. Expert Systems with Applications, 38(3), 2632-2639. Elsevier Ltd. doi:10.1016/j.eswa.2010.08.053
Hua, Z., Yang, J., Huang, F., Xu, X.(2009). A static-dynamic strategy for spare part inventory systems with nonstationary stochastic demand. Journal of the Operational Research Society, 60 (9), pp. 1254-1263.
Huang, M., Smilowitz, K., & Balcik, B. (2012). Models for relief routing: Equity, efficiency and efficacy. Transportation Research Part E: Logistics and Transportation Review, 48(1), 2-18. Elsevier Ltd. doi:10.1016/j.tre.2011.05.004
Huang, M.,Smilowitz, K.,Balcik, B.(2011). Models for relief routing: Equity, efficiency and efficacy. Procedia - Social and Behavioral Sciences. 17, pp. 416-437
Keskin, B. B., Li, S. (Rong), Steil, D., & Spiller, S. (2012). Analysis of an integrated maximum covering and patrol routing problem. Transportation Research Part E: Logistics and Transportation Review, 48(1), 215-232. Elsevier Ltd. doi:10.1016/j.tre.2011.07.005
Klose, A., Drexl, A.(2005). Facility location models for distribution system design. European Journal of Operational Research, 162 (1), pp. 4-29.
Kovács, A. (2011). Optimizing the storage assignment in a warehouse served by milkrun logistics. International Journal of Production Economics, 133(1), 312-318. doi:10.1016/j.ijpe.2009.10.028
Li, A. C. Y., Nozick, L., Xu, N., & Davidson, R. (2012). Shelter location and transportation planning under hurricane conditions. Transportation Research Part E: Logistics and Transportation Review, 48(4), 715-729. Elsevier Ltd. doi:10.1016/j.tre.2011.12.004
Liberatore, F., Ortuño, M. T., Tirado, G., Vitoriano, B., & Scaparra, M. P. (2012). A hierarchical compromise model for the joint optimization of recovery operations and distribution of emergency goods in Humanitarian Logistics. Computers & Operations Research. doi:10.1016/j.cor.2012.03.019
Lodree Jr., E.J., Taskin, S.(2008). An insurance risk management framework for disaster relief and supply chain disruption inventory planning. Journal of the Operational Research Society, 59 (5), pp. 674-684.
Ma, H. , Suo, C. (2006). A model for designing multiple products logistics networks, International Journal of Physical Distribution & Logistics Management, Vol. 36 Iss: 2, pp.127 - 135
Meepetchdee, Y. , Shah, N. (2007). Logistical network design with robustness and complexity considerations, International Journal of Physical Distribution & Logistics Management, Vol. 37 Iss: 3, pp.201 – 222
Mete, H. O., & Zabinsky, Z. B. (2010). Stochastic optimization of medical supply location and distribution in disaster management. International Journal of Production Economics, 126(1), 76-84. Elsevier. doi:10.1016/j.ijpe.2009.10.004
Nevado M. B. (2010). Manual de Logística Humanitaria en Catástrofes
Nolz, P.C., Doerner, K.F., Gutjahr, W.J., Hartl, R.F.(2010). A Bi-objective
metaheuristic for disaster relief operation planning. Studies in Computational
Intelligence, 272, pp. 167-187.
Noyan, N. (2012). Risk-averse two-stage stochastic programming with an
application to disaster management. Computers & Operations Research, 39(3),
541-559. Elsevier. doi:10.1016/j.cor.2011.03.017
Oloruntoba, R., Gray, R.(2006). Humanitarian aid: An agile supply chain?. Supply
Chain Management, 11 (2), pp. 115-120.
Özdamar, L., Ekinci, E., Küçükyazici, B. (2004). Emergency logistics planning in
natural disasters. Annals of Operations Research, 129 (1-4), pp. 217-245.
Pal, P., Das, C.B., Panda, A., Bhunia, A.K. (2005) An application of real-coded
genetic algorithm (for mixed integer non-linear programming in an optimal twowarehouse inventory policy for deteriorating items with a linear trend in demand
and a fixed planning horizon). International Journal of Computer Mathematics 82
(2), 163-175
Rath, S., & Gutjahr, W. J. (2011). A math-heuristic for the warehouse location–
routing problem in disaster relief. Computers & Operations Research, 1-15.
Elsevier. doi:10.1016/j.cor.2011.07.016
Rawls, C.G., Turnquist, M.A.(2010). Pre-positioning of emergency supplies for
disaster response. Transportation Research Part B: Methodological, 44 (4), pp.
521-534
Revelle, C.S., Eiselt, H.A.(2005). Location analysis: A synthesis and survey.
European Journal of Operational Research, 165 (1), pp. 1-19.
Rottkemper, B., Fischer, K., Blecken, A. (2012). A transshipment model for
distribution and inventory relocation under uncertainty in humanitarian operations.
Socio-Economic Planning Sciences 46 (1) , pp. 98-109
Rottkemper, B., Fischer, K., Blecken, A., Danne, C.(2011). Inventory relocation for
overlapping disaster settings in humanitarian operations. OR Spectrum, 33 (3), pp.
721-749.
Saadatseresht, M., Mansourian, A., & Taleai, M. (2009). Evacuation planning using
multiobjective evolutionary optimization approach. European Journal of Operational
Research, 198(1), 305-314. Elsevier B.V. doi:10.1016/j.ejor.2008.07.032
Salmerón, J., Apte, A.(2010). Stochastic optimization for natural disaster asset
prepositioning. Production and Operations Management, 19 (5), pp. 561-574
Tang, C. S. (2006). Perspectives in supply chain risk management. International
Journal of Production Economics, 103(2), 451-488. doi:10.1016/j.ijpe.2005.12.006
Thanh, P. N., Bostel, N., & Péton, O. (2012). A DC programming heuristic applied
to the logistics network design problem. International Journal of Production
Economics, 135(1), 94-105. doi:10.1016/j.ijpe.2010.09.025
Thomas, M.U.(2002). Supply chain reliability for contingency operations.
Proceedings of the Annual Reliability and Maintainability Symposium, pp. 61-67.
Tzeng, G.-H., Cheng, H.-J., Huang, T.D.(2007). Multi-objective optimal planning for
designing relief delivery systems . Transportation Research Part E: Logistics and
Transportation Review, 43 (6), pp. 673-686.
Van Wassenhove, L. N. (2006). Blackett Memorial Lecturew Humanitarian aid
logistics: supply chain management in high gear. Journal of the Operational
Research Society , 57, 475-489.
Viswanath, K., Peeta, S. (2003). Multicommodity Maximal Covering Network
Design Problem for Planning Critical Routes for Earthquake Response.
Transportation Research Record, (1857), pp. 1-10.
Yi, W., & Özdamar, L. (2007). A dynamic logistics coordination model for
evacuation and support in disaster response activities. European Journal of
Operational Research, 179(3), 1177-1193. doi:10.1016/j.ejor.2005.03.077
Yi, W., Kumar, A.(2007). Ant colony optimization for disaster relief operations.
Transportation Research Part E: Logistics and Transportation Review, 43 (6), pp.
660-672.
Yokoya, D. , Yamada, T. (2011). A mathematical programming approach to the
construction of BIBDs. International Journal of Computer Mathematics 88 (5),
1067-1082
Zhang, J.-H., Li, J., & Liu, Z.-P. (2012). Multiple-resource and multiple-depot
emergency response problem considering secondary disasters. Expert Systems
with Applications, 39(12), 11066-11071. Elsevier Ltd.
doi:10.1016/j.eswa.2012.03.016
254653
TE05944
Autor
González Rodríguez, Leonardo José
Institución
Resumen
Actualmente el sistema nacional de atención y prevención de desastres de Colombia no ha realizado estudios previos con respecto a los tiempos de respuesta del sistema de distribución de ayudas a la población afectada por los desastres, la distribución es inmediata pero las características del sistema no se tienen en cuenta en su totalidad. El presente trabajo propone un modelo que representará la distribución de alimentos para población afectada. El método de solución del modelo será Programación Entera Mixta. El modelo determinará el menor tiempo de respuesta, la cantidad de alimento, el tipo de transporte a ser usado y la ruta adecuada para la distribución. Una vez se realizó la prueba del modelo, se hizo la comparación con datos históricos y se observó una reducción de tiempo de respuesta entre el 15% y el 24%. Nota: Para consultar la carta de autorización de publicación de este documento por favor copie y pegue el siguiente enlace en su navegador de internet: http://hdl.handle.net/10818/8664