dc.creatorMamani Coaquira, Yonatan
dc.creatorChumpisuca Carrion, Edith K.
dc.date.accessioned2021-05-24T00:45:14Z
dc.date.accessioned2023-06-02T16:02:44Z
dc.date.available2021-05-24T00:45:14Z
dc.date.available2023-06-02T16:02:44Z
dc.date.created2021-05-24T00:45:14Z
dc.date.issued2020-03-20
dc.identifierIEEE
dc.identifier2709-8990
dc.identifierhttp://repositorio.unamba.edu.pe/handle/UNAMBA/952
dc.identifierRevista de Investigación Micaela
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6587111
dc.description.abstractThere is a wide variety of techniques that increase application performance by alleviating one or more of the most important problems with today's processors. In this work, the execution time, speedup and efficiency of the linear Apriori algorithm are shown as well as parallel with the use of OpenMP. By identifying the frequent elements of transactional databases, in processing 5 thousand records the time improves in 42,078 seconds of the algorithm with openMP compared to the sequential algorithm, in the execution 8 processor cores were used.
dc.languagespa
dc.publisherUniversidad Nacional Micaela Bastidas de Apurímac
dc.relationVolumen 01;2020
dc.relationinfo:pe-repo/semantics/software
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/3.0/us/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States
dc.sourceUniversidad Nacional Micaela Bastidas de Apurímac
dc.sourceRepositorio - UNAMBA
dc.subjectApriori algorithm
dc.subjectparallel algorithm
dc.titleParallelization of the Apriori Algorithm for the Search of Frequent Elements
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución