dc.contributorPardo Benito, José Mauricio
dc.date.accessioned2012-09-24T21:08:22Z
dc.date.available2012-09-24T21:08:22Z
dc.date.created2012-09-24T21:08:22Z
dc.date.issued2012-09-24
dc.identifierAgnieszka C. and Andrzej L (2010). Structural Impact of Osmotically Pretreated Freeze-Dried Strawberries on Their Mechanical Properties. International Journal of Food Properties 13:1134 – 1149.
dc.identifierAndrés A., fito P., Heredia A. and Rosa E. M (2007). Combined drying technologies for development of high quality shelf stable mango products. Drying Technologies 25: 1857-1866.
dc.identifierAntonio G.C., Azoubel P.M., Alves D.G., El-Aouar A.A. and Murr F.E.X (2004). Osmotic dehydration of papaya (Carica papaya L.): Influence of process variables. In Proceedings of the 14th International Drying Symposium Sa˜o Paulo, Brazil. C. 1998–2004.
dc.identifierBarat J.M., Talens P., Barrera C., Chiralt A. and Fito P (2002). Pineapple candying at mild temperature by applying vacuum impregnation. Journal of Food Science. 67(8): 3046–3052.
dc.identifierBarrett D., Beaulieu J.,Shewfelt T R (2010). Color, Flavor, Texture, and Nutritional Quality of Fresh-Cut Fruits and vegetables: Desirable Levels, Instrumental and Sensory Measurement, and the Effects of Processing. Critical Reviews in Food Science and Nutrition 50: 369–389.
dc.identifierBartolomé A. P., Rupérez P. & Fúster C (1995). Pineapple fruit: morphological characteristics,chemical composition and sensory analysis of Red Spanish and Smooth Cayenne cultivars. Food Chemistry 53: 75-79.
dc.identifierBerteli, M. N., & Marsaioli, A (2005). Evaluation of short cut pasta air dehydration assisted by microwaves as compared to the conventional drying process. Journal of Food Engineering, 68(2): 175–183.
dc.identifierBohm V; Kuhnert H.R ; Scholze G.(2006). Improving the nutritional quality of microwave vacuum dried strawberries: Apreliminary study. Food Science and Technology International 12 (1), 67–75.
dc.identifierBórquez R.M., Canales E.R.and Redon J.P (2010). Osmotic dehydration of raspberries with vacuum pretreatment followed by microwave-vacuum drying. Journal of Food Engineering, 99: 121-127
dc.identifierBotha, G.E., Oliveira, J.C., Ahrn´e, L., (2011). Quality optimisation of combined osmotic dehydration and microwave assisted air drying of pineapple using constant power emission, Food and Bioproducts Processing. doi:10.1016/j.fbp.2011.02.006
dc.identifierCao H., Zhang M., Mujumdar A., Du W., Sun J (2006).Optimization of Osmotic Dehydration of Kiwifruit. Drying Technology, 24, 1, 89-94(6)
dc.identifierContreras C., Martín-Esparza M. E., Chiralt A. and Martínez- Navarrete N (2008). Influence of microwave application on convective drying: Effects on drying kinetics and optical and mechanical properties of apple and strawberry. JournaL of Food Engineering 88: 55-64.
dc.identifierCorrea J; Pereira L; Vieira G; Hubinger M. (2010). Mass transfer kinetics of pulsed vacuum osmotic dehydration of guavas. Journal of Food Engineering 96, 498–504
dc.identifierCui Z. W., Li CH. Y., Song Ch.F. and Song Y (2008). Combined microwave vaccum and freeze drying of carrot and apple chips. Drying Technology 26:1517-1523.
dc.identifierChangrue V., Orsat V. and Raghavan G.S.V (2008). Osmotically dehydrated microwave-vaccum drying of strawberries. Journal and Food Processing and Preservation 32: 798-816.
dc.identifierErle U and Schubert H. (2001). Combined osmotic and microwave-vacuum dehydration of apples and strawberries. Journal of Food Engineering 49, 193–199.
dc.identifierFahloul D., Lahbari M., Benmoussa H. and Mezdour S (2009). Effect of osmotic dehydration on the freeze drying kinetics of apricots. Journal of Food, Agriculture & Environment 7:117-121.
dc.identifierFairchild, M (2005). Color Appearance Models. Jhon Models Wiley & Sons, England.
dc.identifierHan Q. H., Yin L.J., Li S.J., Yang B.N. and Ma J. W (2010). Optimization of Process Parameters for Microwave Vacuum Drying of Apple Slices Using Response Surface Method. Drying Technology 28: 523-532.
dc.identifierHawlader M.N.A. Perera C.O., Tian M., Yeo K.L (2006). Drying of guava and papaya: Impact of different drying methods. Drying technology 24:77-87
dc.identifierHuang L., Zhang M., Mujumdar A. and Sun D (2009b). Studies on Decreasing Energy Consumption for a Freeze-Drying Process of Apple Slices. Drying Technology 27: 938–946.
dc.identifierJiang Hao., Zhang Min. and Mujumdar Arun S (2010). Microwave Freeze-Drying Characteristics of Banana Crisps. Drying Technology. 28: 1377–1384.
dc.identifierKhraisheh, M. A. M, McMinn, W. A. M, and Magee, T.R.A. (2004). Quality and structural changes in starchy foods during microwave and convective drying. Food Research International, 37: 497-503.
dc.identifierKonopacka D; jesionkowsk A; klewicki R & Bonazzi C. (2009). The effect of different osmotic agents on the sensory perception of osmo-treated dried fruit Journal of Horticultural Science & Biotechnology ISAFRUIT Special Issue 80–84
dc.identifierKopjar M., Pilizota V., Hribar J., Simcic M., Zlatic E. and Nedic T. N (2008). Influence of trehalose addition and storage conditions on the quality of strawberry cream filling. Journal of Food Engineering. 87(3): 341–350.
dc.identifierLandaeta G., Espinoza A. and Mendez J (2008). Fortificación de mitades de durazno con calcio por medio de la deshidratación osmótica a vacío. Revista tecnológica Espol 21: 39-46.
dc.identifierLi Z., Raghavan G.S.V. and Orsat V (2010a). Optimal power control strategies in microwave drying. Journal of Food Engineering 99: 263–268.
dc.identifierLi Z., Raghavan G.S.V. and Orsat V (2010b). Temperature and power control in microwave drying. Journal of Food Engineering 97: 478-483.
dc.identifierLombar G.E, Oliveira J.C, Fito P. and Andrés A (2008). Osmotic dehydration of pineapple as a pre-treatment for further drying. Journal of Food Engineering 85: 277-284.
dc.identifierLu L., Tang J. and Ran X (1999). Temperature and moisture changes during microwave drying of sliced food. Drying Technology. 17: 413–432.
dc.identifierMarques L., Silveira A. and Freire J (2006). Freeze drying characteristics of tropical fruits. Drying Technology 24: 457-463
dc.identifierMaskan M (2000). Microwave/air and microwave finish drying of banana. Journal of Food Engineering, 44(2): 71–78
dc.identifierMoreno A., León L. and Rios E (2010). Estudio de la cinética fisicoquímica del mango (Mangifera indica L. Var. Tommy Atkins) tratado por métodos combinados de secado. Dyna 162: 75-84.
dc.identifierMuñoz M. (2010). Valor nutritivo de los alimentos de mayor consumo. Composición de alimentos Edición Internacional. Mc Graw Hill Interamericana Editores, SA
dc.identifierNTC4102 (1997). Frutas Frescas: Piña Manzana - Especificaciones. Instituto Colombino de Normas Técnicas y Certificación - ICONTEC. pp. 1 – 15.
dc.identifierPereira L M., Ferrari C.C , Mastrantonio S.D.S, Rodrigues A.C.C. and Hubinger M.D (2006). Kinetic aspects, texture and color evaluation of some tropical fruits during osmotic dehydration. Drying Technology 24: 475-484
dc.identifierPereira N, Marsaioli A. and Ahrné L (2007). Effect of microwave power, air velocity and temperature on the final drying of osmotically dehydrated bananas. Journal od Food Engineering 81: 79-87
dc.identifierProthon F., Ahrn´e L., Funebo T., Kidman S., Langton M. and Sjoholm (2001). LWT-Food Sci Technology. DOI 34:95–101.
dc.identifierRamallo L.A., Mascheroni R.H (2011). Quality evaluation of pineapple fruit during drying process. Food and Bioproducts Processing, 2011: doi:10.1016/j.fbp.2011.06.001.
dc.identifierRasband, W. S. (1997 - 2011). ImageJ 1.44p, National Institutes of Health. Maryland, USA: http:// imagej.nih.gov./ij/.
dc.identifierRatti C (2001). Hot air and freeze-drying of high-values foods: A review. Journal of Food Engineering. 49: 311–319
dc.identifierRodríguez R., Lombraña J.I. and Aguado R (2004). Thermal response of a food model dried under microwave. In Proceedings of the 14th International Drying Symposium (IDS 2004), Sa˜o Paulo, Brazil. C: 1735–1742
dc.identifierSagar V. R. and Suresh Kumar P (2010). Recent advances in drying and dehydration of fruits and vegetables: a review. Journal Food Science Technology 47: 15-26
dc.identifierSanjinez E.J., Branco I., Takito S. and Corbari J. (2010). Influencia de la deshidratación osmótica y de la adición de cloruro de calcio en la conservación de kivis minimamente procesados. Ciência e Tecnologia de Alimentos 30: 205-209.
dc.identifierSanjinez E.J., Menegalli F.C., Cunha R.L. and Hubinger M.D (2005). Evaluation of total carotenoids and ascorbic acid in osmotic pretreated guavas during convective drying. Italian Journal of Food Science.17: 305–314
dc.identifierSantos PHS & Silva MA (2008): Retention of vitamin C in drying processes of fruits and vegetables a review. Drying Technology. 26: 1421-1437
dc.identifierTortoe C (2010). A review of osmodehydration for food industry. African Journal of Food Science 4: 303-324.
dc.identifierUNE-EN 14130 (2003). Productos alimenticios. Determinación de vitamina C mediante HPLC. Asociación Española de Normalización y Certificación (AENOR).pp. 1 – 16.
dc.identifierVial C; Guilbert S; & Cuq J.L (1991). Osmotic dehydration of kiwi fruits: Influence of process variables on the color and ascorbic acid content. Sciences des Aliments 11, 63–84
dc.identifierWais N.L., Santos, M.V., Marani, C.M., Agnelli, M.E. Mascheroni R.H. (2004) Osmotic dehydration and combined osmotic dehydration-hot air drying of banana and apple slices. mass transfer and quality issues. Proceedings of the 14th International Drying Symposium (IDS 2004) São Paulo, Brazil. C:2201-2206
dc.identifierWu G., Zhang M., Mujumdar A.S and Wang R (2010). Effect of Calcium Ion and Microwave Power on Structural and Quality Changes in Drying of Apple Slices. Drying Technology 28: 517- 522.
dc.identifierXu Y., Zhang M., Mujumdar A., Duan X. and Jin-cai S (2006). A Two-Stage Vacuum Freeze and Convective Air Drying Method for Strawberries. Drying Technology: An International Journal 24: 1019 – 1023.
dc.identifierZhang M., Tang J., Mujumdar A.S. and Wang S (2006). Trends in microwave related drying of fruits and vegetables. Trends in Food Science & Technology 17: 524-534
dc.identifierhttp://hdl.handle.net/10818/3631
dc.identifier157726
dc.identifierTE05551
dc.description.abstractTecnologías de microondas (M) y deshidratación osmótica (OD) fueron aplicadas previamente en procesos de liofilización (FD) de piña. Se evaluó color, textura, vitamina C y propiedades sensoriales en las muestras deshidratadas, así como consumo de energía durante los procesos combinados. Se observó mayores cambios de color y firmeza al combinar M-OD-FD, igualmente mayor retención de vitamina C en M-FD. A nivel sensorial se presentó mayor aceptación hacia las frutas endulzadas y menos duras. En términos de consumo energético los pretratamientos combinados presentaron ahorros hasta del 58% con respecto a procesos FD. Por tanto los pretratamientos combinados se presentan como alternativas para el procesamiento de fruta deshidratada teniendo en cuenta los perfiles de exigencias tanto de productores como de consumidores.
dc.languagespa
dc.publisherUniversidad de La Sabana
dc.publisherMaestría en Diseño y Gestión de Procesos
dc.publisherFacultad de Ingeniería
dc.rightsopenAccess
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.sourceUniversidad de La Sabana
dc.subjectDeshidratación de frutas-Investigaciones
dc.subjectFrutas tropicales-Investigaciones
dc.subjectFrutas-Contenido vitamínico-Investigaciones
dc.titleEvaluación del efecto de la combinación de tecnologías de deshidratación aplicadas en tejido de piña sobre el consumo energético del proceso y la calidad del producto terminado
dc.typemasterThesis


Este ítem pertenece a la siguiente institución