dc.creatorRodriguez Urquiaga, Roberto
dc.creatorCuadros Valdivia, Ana María
dc.creatorAlfonte Zapana, Reynaldo
dc.date.accessioned2018-11-21T16:42:45Z
dc.date.accessioned2023-06-01T13:53:57Z
dc.date.available2018-11-21T16:42:45Z
dc.date.available2023-06-01T13:53:57Z
dc.date.created2018-11-21T16:42:45Z
dc.date.issued2018-06-21
dc.identifier978-1-5386-4662-5
dc.identifierhttp://repositorio.ulasalle.edu.pe/handle/20.500.12953/25
dc.identifier2017 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)
dc.identifier10.1109/ISSPIT.2017.8388663
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6517207
dc.description.abstractHigh-dimensional time series analysis through visual techniques poses many challenges due to the visualization solutions proposed until now for exploratory tasks are not well-oriented to high volume of data. When the data sets grow large, the visual alternatives do not allow for a good association between similar time series. With the aim to increase more alternatives, we introduce a visual analytic approach based on Neighbor-Joining similarity tree. The proposed approach internally consists of five time series dimension reduction techniques widely used, two well-known similarity measures and interaction mechanisms to do exploratory analysis of high-dimensional time series data interactively.
dc.languageeng
dc.publisherUniversidad La Salle
dc.relationinfo:eu-repo/semantics/article
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceUniversidad La Salle
dc.subjectResearch Subject Categories::TECHNOLOGY
dc.titleA visual analytics approach for exploration of high-dimensional time series based on neighbor-joining tree
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución