dc.date.accessioned2019-08-18T01:31:58Z
dc.date.accessioned2023-05-31T19:05:11Z
dc.date.available2019-08-18T01:31:58Z
dc.date.available2023-05-31T19:05:11Z
dc.date.created2019-08-18T01:31:58Z
dc.date.issued2016-06
dc.identifierMugruza Vassallo, C. (Junio, 2016). Different regressors for linear modelling of ElectroEncephaloGraphic recordings in visual and auditory tasks. En 13th International Conference on Wearable and Implantable Body Sensor Networks, USA.
dc.identifierhttp://repositorio.uch.edu.pe/handle/uch/323
dc.identifierhttps://ieeexplore.ieee.org/document/7516270
dc.identifierhttp://dx.doi.org/10.1109/BSN.2016.7516270
dc.identifier10.1109/BSN.2016.7516270
dc.identifierAnnual Body Sensor Networks Conference, BSN
dc.identifier2-s2.0-84983381628
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6495641
dc.description.abstractThe use of hierarchical linear modelling has been increasing in the last 5 years to analyze EEG data. Until now, no clear comparison on linear modelling in different modalities has been done. Therefore, specific differences observed in both visual and auditory paradigms were computed with linear modelling. The Coefficient of Determination through the explained variance (R2) in Linear Modelling was sought in visual and auditory modalities. ERP scalp series of time from 100 to 300 ms for the visual task and around 150 ms to 400 for the auditory task were also plotted. Although these paradigms use different regressors, both paradigms showed reliable R2 signatures across the participants and reliable ERP scalp maps. Results accounted for different magnitudes in greater R2 values for visual modality. Auditory R2 results appeared with a reliable linear modelling when compared with R2 studies in other subjects.
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation13th Annual Body Sensor Networks Conference, BSN 2016
dc.relationinfo:eu-repo/semantics/article
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.sourceRepositorio Institucional - UCH
dc.sourceUniversidad de Ciencias y Humanidades
dc.subjectElectroencephalography
dc.subjectAuditory modality
dc.subjectAuditory tasks
dc.subjectCoefficient of determination
dc.subjectEeg datum
dc.subjectVisual modalities
dc.subjectVisual tasks
dc.subjectBody sensor networks
dc.titleDifferent regressors for linear modelling of ElectroEncephaloGraphic recordings in visual and auditory tasks
dc.typeinfo:eu-repo/semantics/conferenceObject


Este ítem pertenece a la siguiente institución