dc.date.accessioned2022-03-10T19:50:12Z
dc.date.accessioned2023-05-30T23:30:46Z
dc.date.available2022-03-10T19:50:12Z
dc.date.available2023-05-30T23:30:46Z
dc.date.created2022-03-10T19:50:12Z
dc.date.issued2021
dc.identifier03029743
dc.identifierhttp://hdl.handle.net/20.500.12590/17047
dc.identifier10.1007/978-3-030-84529-2_5
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6478825
dc.description.abstract"Currently, one important field on machine learning is Urban Perception Computing is to model the way in which humans can interact and understand the environment that surrounds them. This process is performed using convolutional models to learn and identify some insights which define the concept of perception of a place (e.g. a street image). One approach of this field is urban perception of street images, we will focus on this approach to study the safety perception of a city and try to explain why and how the perception can be predicted by a mathematical model. As result, we present an analysis about the influence and impact of the visual components on the safety criteria and also an explanation about why a certain decision on the perception of the safety of the streets, such as safe or unsafe. © 2021, Springer Nature Switzerland AG"
dc.languageeng
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.publisherPE
dc.relationhttps://www.scopus.com/record/display.uri?eid=2-s2.0-85115245165&origin=resultslist&sort=plf-f&src=s&nlo=&nlr=&nls=&sid=bf6bae9a56b2331387d9f5550bd7ed65&sot=aff&sdt=cl&cluster=scopubyr%2c%222021%22%2ct&sl=48&s=AF-ID%28%22Universidad+Cat%c3%b3lica+San+Pablo%22+60105300%29&relpos=55&citeCnt=0&searchTerm=&featureToggles=FEATURE_NEW_DOC_DETAILS_EXPORT:1
dc.relationinfo:eu-repo/semantics/article
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceUniversidad Católica San Pablo
dc.sourceRepositorio Institucional - UCSP
dc.subjectCityscape
dc.subjectComputer vision
dc.subjectDeep learning
dc.subjectGrad-CAM
dc.subjectInterpretability
dc.subjectLIME
dc.subjectPerception computing
dc.subjectPerception learning
dc.subjectStreet View
dc.subjectStreet-level imagery
dc.subjectUrban computing
dc.subjectUrban perception
dc.subjectVisual processing
dc.titleUnderstanding safety based on urban perception
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución