dc.date.accessioned2019-01-29T22:19:56Z
dc.date.accessioned2023-05-30T23:27:54Z
dc.date.available2019-01-29T22:19:56Z
dc.date.available2023-05-30T23:27:54Z
dc.date.created2019-01-29T22:19:56Z
dc.date.issued2008
dc.identifier16876172
dc.identifierhttp://repositorio.ucsp.edu.pe/handle/UCSP/15908
dc.identifierhttps://doi.org/10.1155/2008/691924
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6477720
dc.description.abstractLearning how to extract texture features from noncontrolled environments characterized by distorted images is a still-open task. By using a new rotation-invariant and scale-invariant image descriptor based on steerable pyramid decomposition, and a novel multiclass recognition method based on optimum-path forest, a new texture recognition system is proposed. By combining the discriminating power of our image descriptor and classifier, our system uses small-size feature vectors to characterize texture images without compromising overall classification rates. State-of-the-art recognition results are further presented on the Brodatz data set. High classification rates demonstrate the superiority of the proposed system.
dc.languageeng
dc.publisherScopus
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-45749084524&doi=10.1155%2f2008%2f691924&partnerID=40&md5=94ff5c1565eccb6cc9b0d2400d9cfaa2
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceRepositorio Institucional - UCSP
dc.sourceUniversidad Católica San Pablo
dc.sourceScopus
dc.subjectClassification (of information)
dc.subjectComputer networks
dc.subjectImage enhancement
dc.subjectRotation
dc.subjectTextures
dc.subjectBrodatz
dc.subjectClassification rates
dc.subjectData sets
dc.subjectDiscriminating power
dc.subjectDistorted images
dc.subjectFeature vector (FV)
dc.subjectimage descriptor
dc.subjectInvariant features
dc.subjectmulticlass recognition
dc.subjectrotation invariant
dc.subjectSteerable pyramid (SP)
dc.subjectTexture features
dc.subjecttexture images
dc.subjectTexture recognition
dc.subjectFeature extraction
dc.titleLearning how to extract rotation-invariant and scale-invariant features from texture images
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución