dc.date.accessioned2019-01-29T22:19:56Z
dc.date.accessioned2023-05-30T23:27:50Z
dc.date.available2019-01-29T22:19:56Z
dc.date.available2023-05-30T23:27:50Z
dc.date.created2019-01-29T22:19:56Z
dc.date.issued2010
dc.identifier10009000
dc.identifierhttp://repositorio.ucsp.edu.pe/handle/UCSP/15898
dc.identifierhttps://doi.org/10.1007/s11390-010-9385-2
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6477710
dc.description.abstractWe present and analyze an unsupervised method for Word Sense Disambiguation (WSD). Our work is based on the method presented by McCarthy et al. in 2004 for finding the predominant sense of each word in the entire corpus. Their maximization algorithm allows weighted terms (similar words) from a distributional thesaurus to accumulate a score for each ambiguous word sense, i.e., the sense with the highest score is chosen based on votes from a weighted list of terms related to the ambiguous word. This list is obtained using the distributional similarity method proposed by Lin Dekang to obtain a thesaurus. In the method of McCarthy et al., every occurrence of the ambiguous word uses the same thesaurus, regardless of the context where the ambiguous word occurs. Our method accounts for the context of a word when determining the sense of an ambiguous word by building the list of distributed similar words based on the syntactic context of the ambiguous word. We obtain a top precision of 77.54% of accuracy versus 67.10% of the original method tested on SemCor. We also analyze the effect of the number of weighted terms in the tasks of finding the Most Frecuent Sense (MFS) and WSD, and experiment with several corpora for building the Word Space Model. © 2010 Springer Science+Business Media, LLC & Science Press, China.
dc.languageeng
dc.publisherScopus
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-78650204798&doi=10.1007%2fs11390-010-9385-2&partnerID=40&md5=99192aac46b7a3081deac681de4bf27b
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceRepositorio Institucional - UCSP
dc.sourceUniversidad Católica San Pablo
dc.sourceScopus
dc.subjectDistributional similarities
dc.subjectMaximization algorithm
dc.subjectSemantic similarity
dc.subjectText corpora
dc.subjectUnsupervised method
dc.subjectWord sense
dc.subjectWord Sense Disambiguation
dc.subjectWord spaces
dc.subjectSemantics
dc.subjectSoftware agents
dc.subjectThesauri
dc.subjectNatural language processing systems
dc.titleUnsupervised WSD by finding the predominant sense using context as a dynamic thesaurus
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución