dc.date.accessioned2019-01-29T22:19:55Z
dc.date.accessioned2023-05-30T23:27:49Z
dc.date.available2019-01-29T22:19:55Z
dc.date.available2023-05-30T23:27:49Z
dc.date.created2019-01-29T22:19:55Z
dc.date.issued2011
dc.identifierurn:isbn:9781457721502
dc.identifierhttp://repositorio.ucsp.edu.pe/handle/UCSP/15891
dc.identifierhttps://doi.org/10.1109/HIS.2011.6122168
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6477703
dc.description.abstractClustering is an unsupervised classification method that divides a data set in groups, where the elements of a group have similar characteristics to each other. A well-known clustering method is the Growing Hierarchical Self-Organizing Map (GH-SOM), that improves the results of an ordinary SOM by controlling the number of neurons generated. In this paper it is proposed a optimization of the typical GH-SOM, using a cluster validation index to verify the quality of partitioning. © 2011 IEEE.
dc.languageeng
dc.publisherScopus
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84856748692&doi=10.1109%2fHIS.2011.6122168&partnerID=40&md5=84d450a8bb887d678d92546afd361157
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceRepositorio Institucional - UCSP
dc.sourceUniversidad Católica San Pablo
dc.sourceScopus
dc.subjectCluster validation
dc.subjectClustering methods
dc.subjectData sets
dc.subjectGrowing hierarchical self-organizing maps
dc.subjectUnsupervised classification
dc.subjectIntelligent systems
dc.subjectOptimization
dc.titleA GH-SOM optimization with SOM labelling and dunn index
dc.typeinfo:eu-repo/semantics/conferenceObject


Este ítem pertenece a la siguiente institución