dc.date.accessioned2019-01-29T22:19:54Z
dc.date.accessioned2023-05-30T23:27:45Z
dc.date.available2019-01-29T22:19:54Z
dc.date.available2023-05-30T23:27:45Z
dc.date.created2019-01-29T22:19:54Z
dc.date.issued2013
dc.identifierurn:isbn:9780769550992
dc.identifier15301834
dc.identifierhttp://repositorio.ucsp.edu.pe/handle/UCSP/15869
dc.identifierhttps://doi.org/10.1109/SIBGRAPI.2013.39
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6477682
dc.description.abstractThe continuous creation of digital video has caused an exponential growth of digital video content. To increase the usability of such large volume of videos, a lot of research has been made. Video summarization has been proposed to rapidly browse large video collections. To summarize any type of video, researchers have relied on visual features contained in frames. In order to extract these features, different techniques have used local or global descriptors. In this paper, we propose a method for static video summarization that can produce meaningful and informative video summaries. We perform an evaluation using over 100 videos in order to achieve a stronger position about the performance of local descriptors in semantic video summarization. Our experimental results show, with a confidence level of 99%, that our proposed method using local descriptors and temporal video segmentation produces better summaries than state of the art methods. We also demonstrate the importance of a more elaborate method for temporal video segmentation, improving the generation of summaries, achieving 10% improvement in accuracy. We also acknowledge a marginal importance of color information when using local descriptors to produce video summaries. © 2013 IEEE.
dc.languageeng
dc.publisherScopus
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84891532974&doi=10.1109%2fSIBGRAPI.2013.39&partnerID=40&md5=a0affe279540362a411601282736ba96
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceRepositorio Institucional - UCSP
dc.sourceUniversidad Católica San Pablo
dc.sourceScopus
dc.subjectDigital video content
dc.subjectExponential growth
dc.subjectLocal descriptors
dc.subjectState-of-the-art methods
dc.subjectTemporal segmentations
dc.subjectTemporal video segmentation
dc.subjectVideo summarization
dc.subjectVideo temporal segmentation
dc.subjectComputer graphics
dc.subjectMultimedia systems
dc.subjectSemantics
dc.subjectVideo signal processing
dc.subjectVideo recording
dc.titleA New Method for Static Video Summarization Using Local Descriptors and Video Temporal Segmentation
dc.typeinfo:eu-repo/semantics/conferenceObject


Este ítem pertenece a la siguiente institución