dc.date.accessioned2019-01-29T22:19:53Z
dc.date.accessioned2023-05-30T23:27:42Z
dc.date.available2019-01-29T22:19:53Z
dc.date.available2023-05-30T23:27:42Z
dc.date.created2019-01-29T22:19:53Z
dc.date.issued2016
dc.identifierurn:isbn:9781467384926
dc.identifierhttp://repositorio.ucsp.edu.pe/handle/UCSP/15843
dc.identifierhttps://doi.org/10.1109/ICDMW.2015.233
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6477656
dc.description.abstractHow can we retrieve meaningful information from a large and sparse graph?. Traditional approaches focus on generic clustering techniques and discovering dense cumulus in a network graph, however, they tend to omit interesting patterns such as the paradigmatic relations. In this paper, we propose a novel graph clustering technique modelling the relations of a node using the paradigmatic analysis. We exploit node's relations to extract its existing sets of signifiers. The newly found clusters represent a different view of a graph, which provides interesting insights into the structure of a sparse network graph. Our proposed algorithm PaC (Paradigmatic Clustering) for clustering graphs uses paradigmatic analysis supported by a asymmetric similarity, in contrast to traditional graph clustering methods, our algorithm yields worthy results in tasks of word-sense disambiguation. In addition we propose a novel paradigmatic similarity measure. Extensive experiments and empirical analysis are used to evaluate our algorithm on synthetic and real data. © 2015 IEEE.
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84964770393&doi=10.1109%2fICDMW.2015.233&partnerID=40&md5=26ff37a5a3402b53a73baf00f81bd862
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceRepositorio Institucional - UCSP
dc.sourceUniversidad Católica San Pablo
dc.sourceScopus
dc.subjectCluster analysis
dc.subjectData mining
dc.subjectGraph theory
dc.subjectNatural language processing systems
dc.subjectasymmetric similarity
dc.subjectclustering
dc.subjectClustering techniques
dc.subjectparadigmatic
dc.subjectSimilarity measure
dc.subjectSynthetic and real data
dc.subjectTraditional approaches
dc.subjectWord Sense Disambiguation
dc.subjectClustering algorithms
dc.titleParadigmatic Clustering for NLP
dc.typeinfo:eu-repo/semantics/conferenceObject


Este ítem pertenece a la siguiente institución