dc.date.accessioned2019-01-29T22:19:53Z
dc.date.accessioned2023-05-30T23:27:41Z
dc.date.available2019-01-29T22:19:53Z
dc.date.available2023-05-30T23:27:41Z
dc.date.created2019-01-29T22:19:53Z
dc.date.issued2016
dc.identifierurn:isbn:9781467384186
dc.identifierhttp://repositorio.ucsp.edu.pe/handle/UCSP/15834
dc.identifierhttps://doi.org/10.1109/LA-CCI.2015.7435984
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6477647
dc.description.abstractThis work proposes, implements and evaluates the FP-QIEA-R model as a new quantum inspired evolutionary algorithm based on the concept of quantum superposition that allows the optimization process to be carried on with a smaller number of evaluations. This model is based on a QIEA-R, but instead of just using quantum individuals based on uniform probability density functions, where the update consists on change the width and mean of each pdf; this proposal uses a combined mechanism inspired in particle filter and multilinear regression, re-sampling and relative frequency with the QIEA-R to estimate the probability density functions in a better way. To evaluate this proposal, some experiments under benchmark functions are presented. The obtained statistics from the outcomes show the improved performance of this proposal optimizing numerical problems. © 2015 IEEE.
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84969626836&doi=10.1109%2fLA-CCI.2015.7435984&partnerID=40&md5=c55427a8b3c28835d0b3cb44373f5a54
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceRepositorio Institucional - UCSP
dc.sourceUniversidad Católica San Pablo
dc.sourceScopus
dc.subjectAlgorithms
dc.subjectArtificial intelligence
dc.subjectBandpass filters
dc.subjectDistributed computer systems
dc.subjectFunction evaluation
dc.subjectMonte Carlo methods
dc.subjectOptimization
dc.subjectProbability density function
dc.subjectQuantum theory
dc.subjectSignal filtering and prediction
dc.subjectTarget tracking
dc.subjectBenchmark functions
dc.subjectCombined mechanisms
dc.subjectMulti-linear regression
dc.subjectParticle filter
dc.subjectPDF estimation
dc.subjectQuantum inspired evolutionary algorithm
dc.subjectQuantum superpositions
dc.subjectRelative frequencies
dc.subjectEvolutionary algorithms
dc.titleAn approach to real-coded quantum inspired evolutionary algorithm using particles filter
dc.typeinfo:eu-repo/semantics/conferenceObject


Este ítem pertenece a la siguiente institución