dc.date.accessioned2019-01-29T22:19:52Z
dc.date.accessioned2023-05-30T23:27:40Z
dc.date.available2019-01-29T22:19:52Z
dc.date.available2023-05-30T23:27:40Z
dc.date.created2019-01-29T22:19:52Z
dc.date.issued2016
dc.identifierurn:isbn:9781450348249
dc.identifierhttp://repositorio.ucsp.edu.pe/handle/UCSP/15827
dc.identifierhttps://doi.org/10.1145/3022702.3022714
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6477640
dc.description.abstractThe Evolutionary Algorithms have main features like: population, evolutionary operations (crossover, mate, mutation and others). Most of them are based on randomness and follow a criteria using fitness like selector. The FP-AK-QIEA-R uses probability density function according to best of initial population to sample new population and uses rewarding criteria to sample around the best of every iteration using cumulative density function estimated for Akima interpolation, it was used for mono-objective problems showing good results. The proposal uses the algorithm FP-AKQIEA-R and add Pareto dominance to experiment with multiobjective problems. The performed experiments use some benchmark functions from the literature and initial results shows a promissory way for the algorithm. © 2016 ACM.
dc.languageeng
dc.publisherAssociation for Computing Machinery
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85014862631&doi=10.1145%2f3022702.3022714&partnerID=40&md5=46c1af0f44069678768297d9e398f2bd
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceRepositorio Institucional - UCSP
dc.sourceUniversidad Católica San Pablo
dc.sourceScopus
dc.subjectBioinformatics
dc.subjectInterpolation
dc.subjectIterative methods
dc.subjectMultiobjective optimization
dc.subjectOptimization
dc.subjectProbability density function
dc.subjectBenchmark functions
dc.subjectCumulative density functions
dc.subjectEvolutionary operations
dc.subjectInitial population
dc.subjectMulti-objective problem
dc.subjectParticle filter
dc.subjectPDF estimation
dc.subjectQuantum inspired evolutionary algorithm
dc.subjectEvolutionary algorithms
dc.titleFP-AK-QIEA-R for Multi-Objective optimization
dc.typeinfo:eu-repo/semantics/conferenceObject


Este ítem pertenece a la siguiente institución