dc.date.accessioned2019-01-29T22:19:51Z
dc.date.accessioned2023-05-30T23:27:37Z
dc.date.available2019-01-29T22:19:51Z
dc.date.available2023-05-30T23:27:37Z
dc.date.created2019-01-29T22:19:51Z
dc.date.issued2017
dc.identifierurn:isbn:9783319522760
dc.identifier3029743
dc.identifierhttp://repositorio.ucsp.edu.pe/handle/UCSP/15808
dc.identifierhttps://doi.org/10.1007/978-3-319-52277-7_24
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6477621
dc.description.abstractIn this work, we present a new parallel-driven approach to speed up Optimum-Path Forest (OPF) training phase. In addition, we show how to make OPF up to five times faster for training using a simple parallel-friendly data structure, which can achieve the same accuracy results to the ones obtained by traditional OPF. To the best of our knowledge, we have not observed any work that attempted at parallelizing OPF to date, which turns out to be the main contribution of this paper. The experiments are carried out in four public datasets, showing the proposed approach maintains the trade-off between efficiency and effectiveness. © Springer International Publishing AG 2017.
dc.languageeng
dc.publisherSpringer Verlag
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85013418925&doi=10.1007%2f978-3-319-52277-7_24&partnerID=40&md5=b9c9313fb37394b9f9e08b705310a884
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceRepositorio Institucional - UCSP
dc.sourceUniversidad Católica San Pablo
dc.sourceScopus
dc.subjectEconomic and social effects
dc.subjectForestry
dc.subjectParallel algorithms
dc.subjectGraph algorithms
dc.subjectOptimum-path forests
dc.subjectParallel training
dc.subjectParallelizing
dc.subjectSpeed up
dc.subjectTrade off
dc.subjectTraining phase
dc.subjectPattern recognition
dc.titleA new parallel training algorithm for optimum-path forest-based learning
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución