dc.date.accessioned2019-01-29T22:19:51Z
dc.date.accessioned2023-05-30T23:27:36Z
dc.date.available2019-01-29T22:19:51Z
dc.date.available2023-05-30T23:27:36Z
dc.date.created2019-01-29T22:19:51Z
dc.date.issued2017
dc.identifierurn:isbn:9783319686110
dc.identifier3029743
dc.identifierhttp://repositorio.ucsp.edu.pe/handle/UCSP/15806
dc.identifierhttps://doi.org/10.1007/978-3-319-68612-7_72
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6477619
dc.description.abstractDiabetic retinopathy is one of the leading causes of blindness. Its damage is associated with the deterioration of blood vessels in retina. Progression of visual impairment may be cushioned or prevented if detected early, but diabetic retinopathy does not present symptoms prior to progressive loss of vision, and its late detection results in irreversible damages. Manual diagnosis is performed on retinal fundus images and requires experienced clinicians to detect and quantify the importance of several small details which makes this an exhaustive and time-consuming task. In this work, we attempt to develop a computer-assisted tool to classify medical images of the retina in order to diagnose diabetic retinopathy quickly and accurately. A neural network, with CNN architecture, identifies exudates, micro-aneurysms and hemorrhages in the retina image, by training with labeled samples provided by EyePACS, a free platform for retinopathy detection. The database consists of 35126 high-resolution retinal images taken under a variety of conditions. After training, the network shows a specificity of 93.65% and an accuracy of 83.68% on validation process. © Springer International Publishing AG 2017.
dc.languageeng
dc.publisherSpringer Verlag
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85034233631&doi=10.1007%2f978-3-319-68612-7_72&partnerID=40&md5=a7c8c9d43ac8c0e0498bbbb9d8608442
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceRepositorio Institucional - UCSP
dc.sourceUniversidad Católica San Pablo
dc.sourceScopus
dc.subjectBlood vessels
dc.subjectConvolution
dc.subjectDamage detection
dc.subjectDeep learning
dc.subjectDiagnosis
dc.subjectImage classification
dc.subjectLearning systems
dc.subjectMedical imaging
dc.subjectNeural networks
dc.subjectOphthalmology
dc.subjectComputer-assisted tool
dc.subjectConvolutional neural network
dc.subjectDiabetic retinopathy
dc.subjectIrreversible damage
dc.subjectRetinal fundus images
dc.subjectTime-consuming tasks
dc.subjectValidation process
dc.subjectVisual impairment
dc.subjectEye protection
dc.titleDetection of diabetic retinopathy based on a convolutional neural network using retinal fundus images
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución