dc.date.accessioned2019-01-29T22:19:51Z
dc.date.accessioned2023-05-30T23:27:36Z
dc.date.available2019-01-29T22:19:51Z
dc.date.available2023-05-30T23:27:36Z
dc.date.created2019-01-29T22:19:51Z
dc.date.issued2017
dc.identifierurn:isbn:9781509025312
dc.identifierhttp://repositorio.ucsp.edu.pe/handle/UCSP/15802
dc.identifierhttps://doi.org/10.1109/ANDESCON.2016.7836224
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6477615
dc.description.abstractIn this work, a reservoir simulation approximation model (proxy) based on recurrent artificial neural networks is proposed. This model is intended to obtain rates of oil, gas and water production at time t+1 from the respective production rates, average pressure and water cut at t time and the well operation points to be applied in t + 1. Also, this model is able to follow the dynamics of the reservoir system applying online learning from real production observed values. Also, this model allows perform fast and accurate production forecasting for several steps using a recursive mechanism. This model will be inserted into an oil-production control tool to find the optimal operation conditions within a forecast horizon. The obtained outcomes over the approximation tests indicate the methodology is adequate to perform production forecasts. © 2016 IEEE.
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85015217277&doi=10.1109%2fANDESCON.2016.7836224&partnerID=40&md5=b0fd3ee7e40c1d167290145723b9a65a
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceRepositorio Institucional - UCSP
dc.sourceUniversidad Católica San Pablo
dc.sourceScopus
dc.subjectForecasting
dc.subjectNeural networks
dc.subjectPetroleum reservoir engineering
dc.subjectPetroleum reservoirs
dc.subjectProduction control
dc.subjectElman neural network
dc.subjectOptimal operation conditions
dc.subjectProduction forecasting
dc.subjectProduction forecasts
dc.subjectProxy
dc.subjectRecurrent artificial neural networks
dc.subjectRecurrent networks
dc.subjectReservoir simulation
dc.subjectRecurrent neural networks
dc.titleDynamic and recursive oil-reservoir proxy using Elman neural networks
dc.typeinfo:eu-repo/semantics/conferenceObject


Este ítem pertenece a la siguiente institución