dc.date.accessioned2019-01-29T22:19:51Z
dc.date.accessioned2023-05-30T23:27:36Z
dc.date.available2019-01-29T22:19:51Z
dc.date.available2023-05-30T23:27:36Z
dc.date.created2019-01-29T22:19:51Z
dc.date.issued2017
dc.identifierurn:isbn:9781509033393
dc.identifier15224902
dc.identifierhttp://repositorio.ucsp.edu.pe/handle/UCSP/15800
dc.identifierhttps://doi.org/10.1109/SCCC.2016.7836010
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6477613
dc.description.abstractIn the recent years the convolutional neural network is used successfully in applications of image classification, due to its deep and hierarchical architecture. The hyper parameters of the convolutional neural networks are of great influence to obtain good results in binary classification without the need of a large number of layers. The activation function, the weights initialization and the sub sampling function are the three main hyper parameters. In the present work 27 models of convolutional neural network are trained and tested with automobile images taken from a surveillance camera. The illumination intensity of the test images are different from the training images, because they were taken from scenes of day, evening and night. We also demonstrate the influence of the mean of the images and the size of the filter kernel. The convolutional neural network model with the best result reached 95.6% of accuracy. The results of experiments show that neural networks predict successfully automobile images with varied illumination intensities overcome the techniques Haar Cascade and the Support Vector Machine. © 2016 IEEE.
dc.languageeng
dc.publisherIEEE Computer Society
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85017595640&doi=10.1109%2fSCCC.2016.7836010&partnerID=40&md5=0fc0280cf6fcabcc1860f121713f67e2
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceRepositorio Institucional - UCSP
dc.sourceUniversidad Católica San Pablo
dc.sourceScopus
dc.subjectAutomobiles
dc.subjectConvolution
dc.subjectImage processing
dc.subjectNeural networks
dc.subjectSecurity systems
dc.subjectActivation functions
dc.subjectBinary classification
dc.subjectConvolutional networks
dc.subjectConvolutional neural network
dc.subjectHierarchical architectures
dc.subjectIllumination intensity
dc.subjectNumber of layers
dc.subjectSurveillance cameras
dc.subjectImage classification
dc.titleAnalyzing the effect of hyperparameters in a automobile classifier based on convolutional neural networks
dc.typeinfo:eu-repo/semantics/conferenceObject


Este ítem pertenece a la siguiente institución