dc.date.accessioned2019-01-29T22:19:50Z
dc.date.accessioned2023-05-30T23:27:34Z
dc.date.available2019-01-29T22:19:50Z
dc.date.available2023-05-30T23:27:34Z
dc.date.created2019-01-29T22:19:50Z
dc.date.issued2017
dc.identifierurn:isbn:9781509051052
dc.identifierhttp://repositorio.ucsp.edu.pe/handle/UCSP/15788
dc.identifierhttps://doi.org/10.1109/LA-CCI.2016.7885724
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/6477601
dc.description.abstractThe choice of a good clustering algorithm is vital in many tasks to optimize results. Nowadays, the most used algorithms use only one strategy to find and form the clusters of data, which can limit the effectiveness of the process. This paper presents a new approximation to clustering, called Essence-Based Clustering, that combines multiple strategies in a series of steps, allowing two levels of configuration of parameters, both for the whole algorithm and for each strategy used on its own. Experimental results in known data repositories show that this approach is well suited for solving clustering problems and it can do it with equivalent or better results than the current approaches. © 2016 IEEE.
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85018172586&doi=10.1109%2fLA-CCI.2016.7885724&partnerID=40&md5=d0dc545ae3c2b969b5c229f55d792cab
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceRepositorio Institucional - UCSP
dc.sourceUniversidad Católica San Pablo
dc.sourceScopus
dc.subjectApproximation algorithms
dc.subjectArtificial intelligence
dc.subjectBased clustering
dc.subjectClustering approach
dc.subjectClustering problems
dc.subjectCustomizable
dc.subjectData repositories
dc.subjectMulti-strategic
dc.subjectMultiple strategy
dc.subjectClustering algorithms
dc.titleEssence-Based Clustering: A multi-strategic and highly-customizable clustering approach
dc.typeinfo:eu-repo/semantics/conferenceObject


Este ítem pertenece a la siguiente institución